SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Salluzzo Marco) "

Sökning: WFRF:(Salluzzo Marco)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Braicovich, Lucio, et al. (författare)
  • Determining the electron-phonon coupling in superconducting cuprates by resonant inelastic x-ray scattering: Methods and results on Nd1+xBa2-xCu3O7-δ
  • 2020
  • Ingår i: Physical Review Research. - 2643-1564. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The coupling between lattice vibration quanta and valence electrons can induce charge-density modulations and decisively influence the transport properties of materials, e.g., leading to conventional superconductivity. In high-critical-temperature superconductors, where electronic correlation is the main actor, the actual role of electron-phonon coupling (EPC) is being intensely debated theoretically and investigated experimentally. We present an in-depth study of how the EPC strength can be obtained directly from resonant inelastic x-ray scattering (RIXS) data through the theoretical approach derived by Ament et al. [Europhys. Lett. 95, 27008 (2011)]. The role of the model parameters (e.g., phonon energy ω0, intermediate state lifetime 1/Γ, EPC matrix element M, and detuning energy Ω) is thoroughly analyzed, providing general relations among them that can be used to make quantitative estimates of the dimensionless EPC g=(M/ω0)2 without detailed microscopic modeling. We then apply these methods to very high-resolution Cu L3-edge RIXS spectra of three Nd1+xBa2−xCu3O7−δ films. For the insulating antiferromagnetic parent compound, the value of M as a function of the in-plane momentum transfer is obtained for Cu-O bond-stretching (breathing) and bond-bending (buckling) phonon branches. For the underdoped and the nearly optimally doped samples, the effects of Coulomb screening and of charge-density-wave correlations on M are assessed. In light of the anticipated further improvements of the RIXS experimental resolution, this work provides a solid framework for an exhaustive investigation of the EPC in cuprates and other quantum materials.
  •  
2.
  • Krieger, G., et al. (författare)
  • Charge and Spin Order Dichotomy in NdNiO2 Driven by the Capping Layer
  • 2022
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 129:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Superconductivity in infinite-layer nickelates holds exciting analogies with that of cuprates, with similar structures and 3d-electron count. Using resonant inelastic x-ray scattering, we studied electronic and magnetic excitations and charge density correlations in Nd1-xSrxNiO2 thin films with and without an SrTiO3 capping layer. We observe dispersing magnons only in the capped samples, progressively dampened at higher doping. We detect an elastic resonant scattering peak in the uncapped x=0 compound at wave vector (∼⅓,0), remindful of the charge order signal in hole doped cuprates. The peak weakens at x=0.05 and disappears in the superconducting x=0.20 film. The role of the capping on the electronic reconstruction far from the interface remains to be understood.
  •  
3.
  • Peng, Y. Y., et al. (författare)
  • Doping dependence of the electron-phonon coupling in two families of bilayer superconducting cuprates
  • 2022
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 105:11
  • Tidskriftsartikel (refereegranskat)abstract
    • While electron-phonon coupling (EPC) is crucial for Cooper pairing in conventional superconductors, its role in high-Tc superconducting cuprates is debated. Using resonant inelastic x-ray scattering at the oxygen K edge, we study the EPC in Bi2Sr2CaCu2O8+δ (Bi2212) and Nd1+xBa2-xCu3O7-δ (NBCO) at different doping levels ranging from heavily underdoped (p=0.07) to overdoped (p=0.21). We analyze the data with a localized Lang-Firsov model that allows for the coherent excitations of two phonon modes. While electronic band dispersion effects are non-negligible, we are able to perform a study of the relative values of EPC matrix elements in these cuprate families. In the case of NBCO, the choice of the excitation energy allows us to disentangle modes related to the CuO chains and the CuO2 planes. Combining the results from the two families, we find the EPC strength decreases with doping at q∥=(-0.25,0) r.l.u., but has a nonmonotonic trend as a function of doping at smaller momenta. This behavior is attributed to the screening effect of charge carriers. We also find that the phonon intensity is enhanced in the vicinity of the charge-density-wave excitations while the extracted EPC strength appears to be less sensitive to their proximity. By performing a comparative study of two cuprate families, we are able to identify general trends in the EPC for the cuprates and provide experimental input to theories invoking a synergistic role for this interaction in d-wave pairing.
  •  
4.
  • Rossi, Matteo, et al. (författare)
  • Experimental Determination of Momentum-Resolved Electron-Phonon Coupling
  • 2019
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 123:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide a novel experimental method to quantitatively estimate the electron-phonon coupling and its momentum dependence from resonant inelastic x-ray scattering (RIXS) spectra based on the detuning of the incident photon energy away from an absorption resonance. We apply it to the cuprate parent compound NdBa2Cu3O6 and find that the electronic coupling to the oxygen half-breathing phonon branch is strongest at the Brillouin zone boundary, where it amounts to ∼0.17 eV, in agreement with previous studies. In principle, this method is applicable to any absorption resonance suitable for RIXS measurements and will help to define the contribution of lattice vibrations to the peculiar properties of quantum materials.
  •  
5.
  • Arpaia, Riccardo, 1985, et al. (författare)
  • Dynamical charge density fluctuations pervading the phase diagram of a Cu-based high-Tc superconductor
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 365:6456, s. 906-910
  • Tidskriftsartikel (refereegranskat)abstract
    • Charge density modulations have been observed in all families of high–critical temperature (Tc) superconducting cuprates. Although they are consistently found in the underdoped region of the phase diagram and at relatively low temperatures, it is still unclear to what extent they influence the unusual properties of these systems. Using resonant x-ray scattering, we carefully determined the temperature dependence of charge density modulations in YBa2Cu3O7–d and Nd1+xBa2–xCu3O7–d for several doping levels. We isolated short-range dynamical charge density fluctuations in addition to the previously known quasi-critical charge density waves. They persist up to well above the pseudogap temperature T*, are characterized by energies of a few milli–electron volts, and pervade a large area of the phase diagram.
  •  
6.
  • Barthelemy, A., et al. (författare)
  • Quasi-two-dimensional electron gas at the oxide interfaces for topological quantum physics
  • 2021
  • Ingår i: Europhysics Letters. - : IOP Publishing. - 0295-5075 .- 1286-4854. ; 133:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of “fault-tolerant” quantum computers, unaffected by noise and decoherence, is one of the fundamental challenges in quantum technology. One of the approaches currently followed is the realization of “topologically protected” qubits which make use of quantum systems characterized by a degenerate ground state of composite particles, known as “non-Abelian anyons”, able to encode and manipulate quantum information in a non-local manner. In this paper, we discuss the potential of quasi-two-dimensional electron gas (q2DEG) at the interface between band insulating oxides, like LaAlO3 and SrTiO3, as an innovative technological platform for the realization of topological quantum systems. Being characterized by a unique combination of unconventional spin-orbit coupling, magnetism, and 2D-superconductivity, these systems naturally possess most of the fundamental characteristics needed for the realization of a topological superconductor. These properties can be widely tuned by electric field effect acting on the orbital splitting and occupation of the non-degenerate 3dxy and 3dxz,yz bands. The topological state in oxide q2DEGs quasi-one-dimensional nanochannels could be therefore suitably controlled, leading to conceptual new methods for the realization of a topological quantum electronics based on the tuning of the orbital degrees of freedom.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy