SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Samuelsson Sofie) ;pers:(Ehinger Mats)"

Sökning: WFRF:(Samuelsson Sofie) > Ehinger Mats

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Malmberg, Erik, et al. (författare)
  • Minimal residual disease assessed with deep sequencing of NPM1 mutations predicts relapse after allogeneic stem cell transplant in AML
  • 2019
  • Ingår i: Leukemia and Lymphoma. - : Informa UK Limited. - 1042-8194 .- 1029-2403. ; 60:2, s. 409-417
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in NPM1 can be used for minimal residual disease (MRD) analysis in acute myeloid leukemia (AML). We here applied a newly introduced method, deep sequencing, allowing for simultaneous analysis of all recurrent NPM1 insertions and thus constituting an attractive alternative to multiple PCRs for the clinical laboratory. We retrospectively used deep sequencing for measurement of MRD pre- and post-allogeneic hematopoietic stem cell transplantation (alloHCT). For 29 patients in morphological remission at the time of alloHCT, the effect of deep sequencing MRD on outcome was assessed. MRD positivity was defined as variant allele frequency ≥0.02%. Post-transplant MRD status was significantly and independently associated with clinical outcome; 3-year relapse-free survival 20% vs 85% (p <.001), HR 45 (95% CI 2–1260), and overall survival 20% vs 89% (p <.001), HR 49 (95% CI 2–1253). Thus, the new methodology deep sequencing is an applicable and predictive tool for MRD assessment in AML.
  •  
2.
  • Malmberg, Erik, et al. (författare)
  • Patient-tailored analysis of minimal residual disease in acute myeloid leukemia using next-generation sequencing
  • 2017
  • Ingår i: European Journal of Haematology. - : Wiley. - 0902-4441 .- 1600-0609. ; 98:1, s. 26-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Next-generation sequencing techniques have revealed that leukemic cells in acute myeloid leukemia often are characterized by a limited number of somatic mutations. These mutations can be the basis for the detection of leukemic cells in follow-up samples. The aim of this study was to identify leukemia-specific mutations in cells from patients with acute myeloid leukemia and to use these mutations as markers for minimal residual disease. Leukemic cells and normal lymphocytes were simultaneously isolated at diagnosis from 17 patients with acute myeloid leukemia using fluorescence-activated cell sorting. Exome sequencing of these cells identified 240 leukemia-specific single nucleotide variations and 22 small insertions and deletions. Based on estimated allele frequencies and their accuracies, 191 of these mutations qualified as candidates for minimal residual disease analysis. Targeted deep sequencing with a significance threshold of 0.027% for single nucleotide variations and 0.006% for NPM1 type A mutation was developed for quantification of minimal residual disease. When tested on follow-up samples from a patient with acute myeloid leukemia, targeted deep sequencing of single nucleotide variations as well as NPM1 was more sensitive than minimal residual disease quantification with multiparameter flow cytometry. In conclusion, we here describe how exome sequencing can be used for identification of leukemia-specific mutations in samples already at diagnosis of acute myeloid leukemia. We also show that targeted deep sequencing of such mutations, including single nucleotide variations, can be used for high-sensitivity quantification of minimal residual disease in a patient-tailored manner.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy