SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sanchez Monge A.) "

Sökning: WFRF:(Sanchez Monge A.)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schael, S, et al. (författare)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Forskningsöversikt (refereegranskat)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
2.
  • Schael, S., et al. (författare)
  • Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP
  • 2013
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 532:4, s. 119-244
  • Forskningsöversikt (refereegranskat)abstract
    • Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma - 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019. (C) 2013 Elsevier B.V. All rights reserved.
  •  
3.
  • Duarte-Cabral, A., et al. (författare)
  • The SEDIGISM survey: Molecular clouds in the inner Galaxy
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 3027-3049
  • Forskningsöversikt (refereegranskat)abstract
    • We use the 13CO(2-1) emission from the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic InterStellar Medium) high-resolution spectral-line survey of the inner Galaxy, to extract the molecular cloud population with a large dynamic range in spatial scales, using the Spectral Clustering for Interstellar Molecular Emission Segmentation (SCIMES) algorithm. This work compiles a cloud catalogue with a total of 10 663 molecular clouds, 10 300 of which we were able to assign distances and compute physical properties. We study some of the global properties of clouds using a science sample, consisting of 6664 well-resolved sources and for which the distance estimates are reliable. In particular, we compare the scaling relations retrieved from SEDIGISM to those of other surveys, and we explore the properties of clouds with and without high-mass star formation. Our results suggest that there is no single global property of a cloud that determines its ability to form massive stars, although we find combined trends of increasing mass, size, surface density, and velocity dispersion for the sub-sample of clouds with ongoing high-mass star formation. We then isolate the most extreme clouds in the SEDIGISM sample (i.e. clouds in the tails of the distributions) to look at their overall Galactic distribution, in search for hints of environmental effects. We find that, for most properties, the Galactic distribution of the most extreme clouds is only marginally different to that of the global cloud population. The Galactic distribution of the largest clouds, the turbulent clouds and the high-mass star-forming clouds are those that deviate most significantly from the global cloud population. We also find that the least dynamically active clouds (with low velocity dispersion or low virial parameter) are situated further afield, mostly in the least populated areas. However, we suspect that part of these trends may be affected by some observational biases (such as completeness and survey limitations), and thus require further follow up work in order to be confirmed.
  •  
4.
  • Schuller, F., et al. (författare)
  • The SEDIGISM survey: First Data Release and overview of the Galactic structure
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 3064-3082
  • Tidskriftsartikel (refereegranskat)abstract
    • The SEDIGISM (Structure, Excitation and Dynamics of the Inner Galactic InterstellarMedium) survey used the APEX telescope to map 84 deg(2) of the Galactic plane between l = -60 degrees and +31 degrees in several molecular transitions, including (CO)-C-13(2 - 1) and (CO)-O-18(2 - 1), thus probing the moderately dense (similar to 10(3) cm(-3)) component of the interstellar medium. With an angular resolution of 30 arcsec and a typical 1 sigma sensitivity of 0.8-1.0K at 0.25 km s(-1) velocity resolution, it gives access to a wide range of structures, from individual star-forming clumps to giant molecular clouds and complexes. The coverage includes a good fraction of the first and fourth Galactic quadrants, allowing us to constrain the large-scale distribution of cold molecular gas in the inner Galaxy. In this paper, we provide an updated overview of the full survey and the data reduction procedures used. We also assess the quality of these data and describe the data products that are being made publicly available as part of this First Data Release (DR1). We present integrated maps and position-velocity maps of the molecular gas and use these to investigate the correlation between the molecular gas and the large-scale structural features of the Milky Way such as the spiral arms, Galactic bar and Galactic Centre. We find that approximately 60 per cent of the molecular gas is associated with the spiral arms and these appear as strong intensity peaks in the derived Galactocentric distribution. We also find strong peaks in intensity at specific longitudes that correspond to the Galactic Centre and well-known star-forming complexes, revealing that the 13CO emission is concentrated in a small number of complexes rather than evenly distributed along spiral arms.
  •  
5.
  • Urquhart, J. S., et al. (författare)
  • SEDIGISM-ATLASGAL: Dense gas fraction and star formation efficiency across the Galactic disc
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 3050-3063
  • Tidskriftsartikel (refereegranskat)abstract
    • By combining two surveys covering a large fraction of the molecular material in the Galactic disc, we investigate the role spiral arms play in the star formation process. We have matched clumps identified by APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) with their parental giant molecular clouds (GMCs) as identified by SEDIGISM, and use these GMC masses, the bolometric luminosities, and integrated clump masses obtained in a concurrent paper to estimate the dense gas fractions (DGFgmc = ΣMclump/Mgmc) and the instantaneous star formation efficiencies (i.e. SFEgmc = ΣLclump/Mgmc). We find that the molecular material associated with ATLASGAL clumps is concentrated in the spiral arms (∼60 per cent found within ±10 km s-1 of an arm).We have searched for variations in the values of these physical parameters with respect to their proximity to the spiral arms, but find no evidence for any enhancement that might be attributable to the spiral arms. The combined results from a number of similar studies based on different surveys indicate that, while spiral-arm location plays a role in cloud formation and HI to H2 conversion, the subsequent star formation processes appear to depend more on local environment effects. This leads us to conclude that the enhanced star formation activity seen towards the spiral arms is the result of source crowding rather than the consequence of any physical process.
  •  
6.
  • Tafoya Martinez, Daniel, 1981, et al. (författare)
  • (Sub)millimeter emission lines of molecules in born-again stars
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 600
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Born-again stars provide a unique possibility to study the evolution of the circumstellar envelope of evolved stars in human timescales. Up until now, most of the observations of the circumstellar material in these stars have been limited to studying the relatively hot gas and dust. In other evolved stars, the emission from rotational transitions of molecules, such as CO, is commonly used to study the cool component of their circumstellar envelopes. Thus, the detection and study of molecular gas in born-again stars is of great importance when attempting to understand their composition and chemical evolution. In addition, the molecular emission is an invaluable tool for exploring the physical conditions, kinematics, and formation of asymmetric structures in the circumstellar envelopes of these evolved stars. However, up until now, all attempts to detect molecular emission from the cool material around born-again stars have failed. Aims. We searched for emission from rotational transitions of molecules in the hydrogen-deficient circumstellar envelopes of born-again stars to explore the chemical composition, kinematics, and physical parameters of the relatively cool gas. Methods. We carried out observations using the APEX and IRAM 30 m telescopes to search for molecular emission toward four well-studied born-again stars, V4334 Sgr, V605 Aql, A30, and A78, that are thought to represent an evolutionary sequence. Results. For the first time, we detected emission from HCN and (IICN)-C-13 molecules toward V4334 Sgr, and CO emission in V605 Aql. No molecular emission was detected above the noise level toward A30 and A78. The detected lines exhibit broad linewidths greater than or similar to 150 km s(-1), which indicates that the emission comes from gas ejected during the born-again event, rather than from the old planetary nebula. A first estimate of the (HCN)-C-12/(HCN)-C-13 abundance ratio in the circumstellar environment of V4334 Sgr is approximate to 3, which is similar to the value of the C-12/C-13 ratio measured from other observations. We derived a rotational temperature of T-rot = 13 +/- 1 K, and a total column density of N-HCN = 1.6 +/- 0.1 x 10(16) cm(-2) for V4334 Sgr. This result sets a lower limit on the amount of hydrogen that was ejected into the wind during the born-again event of this source. For V605 Aql, we obtained a lower limit for the integrated line intensities I-12CO/I-13CO > 4.
  •  
7.
  • Barnes, A. T., et al. (författare)
  • ALMA-IRDC: dense gas mass distribution from cloud to core scales
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:3, s. 4601-4626
  • Tidskriftsartikel (refereegranskat)abstract
    • Infrared dark clouds (IRDCs) are potential hosts of the elusive early phases of high mass star formation (HMSF). Here, we conduct an in-depth analysis of the fragmentation properties of a sample of 10 IRDCs, which have been highlighted as some of the best candidates to study HMSF within the Milky Way. To do so, we have obtained a set of large mosaics covering these IRDCs with Atacama Large Millimeter/submillimeter Array (ALMA) at Band 3 (or 3 mm). These observations have a high angular resolution (similar to 3 arcsec; similar to 0.05 pc), and high continuum and spectral line sensitivity (similar to 0.15 mJy beam(-1) and similar to 0.2 K per 0.1 km s(-1) channel at the N2H+ (1 - 0) transition). From the dust continuum emission, we identify 96 cores ranging from low to high mass (M = 3.4-50.9M(circle dot)) that are gravitationally bound (alpha(vir) = 0.3-1.3) and which would require magnetic field strengths of B = 0.3-1.0 mG to be in virial equilibrium. We combine these results with a homogenized catalogue of literature cores to recover the hierarchical structure within these clouds over four orders of magnitude in spatial scale (0.01-10 pc). Using supplementary observations at an even higher angular resolution, we find that the smallest fragments (<0.02 pc) within this hierarchy do not currently have the mass and/or the density required to form high-mass stars. None the less, the new ALMA observations presented in this paper have facilitated the identification of 19 (6 quiescent and 13 star-forming) cores that retain >16M(circle dot) without further fragmentation. These high-mass cores contain trans-sonic non-thermal motions, are kinematically sub-virial, and require moderate magnetic field strengths for support against collapse. The identification of these potential sites of HMSF represents a key step in allowing us to test the predictions from high-mass star and cluster formation theories.
  •  
8.
  • Schilke, P., et al. (författare)
  • Ubiquitous Argonium, ArH+, in the Diffuse Interstellar Medium
  • 2014
  • Ingår i: 13th International HITRAN Conference, Cambridge MA, USA.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • ArH+ is isoelectronic with HCl. The J = 1-0 and 2-1 transitions of 36ArH+ near 617.5 and 1234.6 GHz, respectively, have been identified very recently as emission lines in spectra obtained with Herschel toward the Crab Nebula supernova remnant.1 On Earth, 40Ar is by far the most abundant isotope, being almost exclusively formed by the radioactive decay of 40K. However, 36Ar is the dominant isotope in the Universe.In the course of unbiased line surveys of the massive and very luminous Galactic Center star-forming regions Sagittarius B2(M) and (N) with the high-resolution instrument HIFI on board of Herschel, we detected the J = 1-0 transition of 36ArH+ as a moderately strong absorption line initially associated with an unidentified carrier.2 In both cases, the absorption feature is unique in its appearance at all velocity components associated with diffuse foreground molecular clouds, together with its conspicuous absence at velocities related to the denser sources themselves. Model calculations are able to reproduce the derived ArH+ column densities and suggest that argonium resides in the largely atomic, diffuse interstellar medium with a molecular fraction of no more than ˜10-3. The 38ArH+ isotopologue was also detected.Subsequent observations toward the continuum sources W51, W49, W31C, and G34.3+0.1 resulted in unequivocal detections of 36ArH+ absorption. Hence, argonium is a good probe of the transition zone between atomic and molecular gas, in particular in combination with OH+ and H2O+, whose abundances peak at a molecular fraction of ˜0.1. Moreover, argonium is a good indicator of an enhanced cosmic ray ionization rate. Therefore, it may be prominent toward, e.g., active galactic nuclei (AGNs) in addition to supernova remnants.
  •  
9.
  • Schilke, P., et al. (författare)
  • Ubiquitous argonium (ArH$^{+}$) in the diffuse interstellar medium: A molecular tracer of almost purely atomic gas
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 566:June, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: We describe the assignment of a previously unidentified interstellar absorption line to ArH+ and discuss its relevance in the context of hydride absorption in diffuse gas with a low H2 fraction. The confidence of the assignment to ArH+ is discussed, and the column densities are determined toward several lines of sight. The results are then discussed in the framework of chemical models, with the aim of explaining the observed column densities. Methods: We fitted the spectral lines with multiple velocity components, and determined column densities from the line-to-continuum ratio. The column densities of ArH+ were compared to those of other species, tracing interstellar medium (ISM) components with different H2 abundances. We constructed chemical models that take UV radiation and cosmic ray ionization into account. Results: Thanks to the detection of two isotopologues, 36ArH+ and 38ArH+, we are confident about the carrier assignment to ArH+. NeH+ is not detected with a limit of [NeH+]/[ArH+] ≤ 0.1. The derived column densities agree well with the predictions of chemical models. ArH+ is a unique tracer of gas with a fractional H2 abundance of 10-4 - 10-3 and shows little correlation to H2O+, which traces gas with a fractional H2 abundance of ≈0.1. Conclusions: A careful analysis of variations in the ArH+, OH+, H2O+, and HF column densities promises to be a faithful tracer of the distribution of the H2 fractional abundance by providing unique information on a poorly known phase in the cycle of interstellar matter and on its transition from atomic diffuse gas to dense molecular gas traced by CO emission. Abundances of these species put strong observational constraints upon magnetohydrodynamical (MHD)simulations of the interstellar medium, and potentially could evolve into a tool characterizing the ISM. Paradoxically, the ArH+ molecule is a better tracer of almost purely atomic hydrogen gas than Hi itself, since Hi can also be present in gas with a significant molecular content, but ArH+ singles out gas that is >99.9% atomic.
  •  
10.
  • Treviño Morales, Sandra, 1985, et al. (författare)
  • Dynamics of cluster-forming hub-filament systems The case of the high-mass star-forming complex Monoceros R2
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 629
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. High-mass stars and star clusters commonly form within hub-filament systems. Monoceros R2 (hereafter Mon R2), at a distance of 830 pc, harbors one of the closest of these systems, making it an excellent target for case studies. Aims. We investigate the morphology, stability and dynamical properties of the Mon R2 hub-filament system. Methods. We employed observations of the (CO)-C-13 and (CO)-O-18 1 -> 0 and 2 -> 1 lines obtained with the IRAM-30m telescope. We also used H-2 column density maps derived from Herschel dust emission observations. Results. We identified the filamentary network in Mon R-2 with the DisPerSE algorithm and characterized the individual filaments as either main (converging into the hub) or secondary (converging to a main filament). The main filaments have line masses of 30-100 M-circle dot pc(-1) and show signs of fragmentation, while the secondary filaments have line masses of 12-60 M-circle dot pc(-1) and show fragmentation only sporadically. In the context of Ostriker's hydrostatic filament model, the main filaments are thermally supercritical. If non-thermal motions are included, most of them are transcritical. Most of the secondary filaments are roughly transcritical regardless of whether non-thermal motions are included or not. From the morphology and kinematics of the main filaments, we estimate a mass accretion rate of 10(-4)-10(-3) M-circle dot yr(-1) into the central hub. The secondary filaments accrete into the main filaments at a rate of 0.1-0.4 x 10(-4) M-circle dot yr(-1). The main filaments extend into the central hub. Their velocity gradients increase toward the hub, suggesting acceleration of the gas. We estimate that with the observed infall velocity, the mass-doubling time of the hub is similar to 2.5 Myr, ten times longer than the free-fall time, suggesting a dynamically old region. These timescales are comparable with the chemical age of the HII region. Inside the hub, the main filaments show a ring-or a spiral-like morphology that exhibits rotation and infall motions. One possible explanation for the morphology is that gas is falling into the central cluster following a spiral-like pattern.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy