SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sandler Stellan) ;pers:(Blixt Martin 1977)"

Sökning: WFRF:(Sandler Stellan) > Blixt Martin 1977

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blixt, Martin, 1977-, et al. (författare)
  • Characterization of β-cell function of pancreatic islets isolated from bank voles developing glucose intolerance/diabetes : an animal model showing features of both type 1 and type 2 diabetes mellitus, and a possible role of the Ljungan virus
  • 2007
  • Ingår i: General and Comparative Endocrinology. - : Elsevier BV. - 0016-6480 .- 1095-6840. ; 154:1-3, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Bank voles (Clethrionomys glareolus) kept in captivity develop diabetes mellitus to a significant extent. Also in wild bank voles, elevated blood glucose has been observed. A newly isolated picornavirus named Ljungan virus (LV) has been found in the pancreas of these bank voles. Moreover, LV infection in combination with environmental factors may cause glucose intolerance/diabetes (GINT/D) in normal mice. The aim of the present study was to investigate the functional characteristics of pancreatic islets, isolated from bank voles, bred in the laboratory but considered LV infected. About 20% of all males and females were classified as GINT/D following a glucose tolerance test. Of these animals the majority had become diabetic by 20 weeks of age, with a tendency towards an earlier onset in the males. GINT/D animals had increased serum insulin levels. Islets were tested on the day of isolation (day 0) and after 1 week of culture for their insulin content and their capacity to synthesize (pro)insulin, secrete insulin and metabolize glucose. Functional differences could be observed between normal and GINT/D animals as well as between genders. An elevated basal insulin secretion was observed on day 0 indicating β-cell dysfunction among islets isolated from diabetic males. In vitro culture could reverse some functional changes. The increased serum insulin level and the increased basal islet insulin secretion may suggest that the animals had developed a type 2 diabetes-like condition. It is likely that the putative stress imposed in the laboratory, maybe in combination with LV infection, can lead to an increased functional demand on the β-cells.
  •  
2.
  •  
3.
  •  
4.
  • Blixt, Martin, 1977-, et al. (författare)
  • Suppression of bank vole pancreatic islet function by proinflammatory cytokines
  • 2009
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 305:1-2, s. 1-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Bank voles kept in captivity may develop diabetes. We recently characterized beta-cell function of pancreatic islets from normal and glucose intolerant/diabetic bank voles. These animals had features of both human type 1 and type 2 diabetes. Cytokines may impair β-cell function in both types of diabetes. Presently, we studied how pancreatic islets isolated from normal, i.e. glucose tolerant bank voles are affected by proinflammatory cytokines in vitro. Islets were exposed to hIL-1β (25U/ml) alone or in combination with hTNF-α (1000U/ml)+mIFN-γ (1000U/ml) for 48h, whereupon islet functions were assessed. Cytokines markedly reduced insulin gene expression and the (pro)insulin biosynthesis rate, which was accompanied by a profound depletion of the islet insulin content. The cytokines did not affect the culture medium insulin accumulation and the glucose oxidation rate, but caused a modest increase in medium nitrite, an indicator of nitric oxide (NO) generation. Cytokine-induced decrease in islet insulin content was not prevented by the preferential inducible NO synthase inhibitor aminoguanidine. These findings suggest that the reduction in islet insulin content is not attributed to enhanced exocytosis or related to altered glucose metabolism, but is rather due to a decline in insulin production. The suppressive effects of islet functions elicited by cytokines seem to be mediated by an NO-independent mechanism. In relation to previous studies on cytokine effects on islets from various species, the bank vole islets show a pattern which more resembles human islets than rat or murine islets.
  •  
5.
  • Blixt, Martin, 1977- (författare)
  • The bank vole (Myodes glareolus) – a novel animal model for the study of diabetes mellitus
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The bank vole (Microtus arvalis) develops glucose intolerance both when kept in captivity and in the wild state. Glucose intolerant bank voles kept in captivity exhibited polydipsia, polyuria, hyperglycemia, hyperinsulinemia, islet autoantibodies and a markedly changed islet structure resembling so–called hydropic degeneration. Islets showing hydropic degeneration have reduced β–cell mass. However, the relative islet size to total pancreas area was not changed. Pancreatic islet isolated from glucose intolerant bank voles had an altered islet function showing signs of being exposed to an increased functional demand on their β–cells. Also, islets from male bank voles seem more affected than the islets from females. Islets isolated from glucose tolerant male bank voles cultured for 5 days at 28 mM glucose did not reveal any change in insulin gene expression or insulin biosynthesis rate. However, islets from female bank voles displayed a glucose concentration dependent response. This suggests that there is gender difference in that, islets of female more easily than islets of males adapt to elevated glucose concentration. Furthermore, islets isolated from glucose tolerant males had reduced insulin gene expression after exposure to proinflammatory cytokines for 48 hrs. This effect seemed to be NO-independent since only a minor elevation of nitrite accumulation in the medium was seen, and the use of iNOS inhibitor could not counteract the cytokine effect. The observed response seen in bank vole islets upon exposure to various glucose concentrations or proinflammatory cytokines is similar to those seen in studies of human islets. The bank vole may therefore represent a novel animal model for the study of diabetes. An unresolved issue is the role of the Ljungan virus which is found in the bank vole colony. Bank voles developing glucose intolerance display features of both human type 1 and type 2 diabetes, where environmental factors seems to play an important role as determinant. Our findings suggest that bank voles bred in the laboratory may develop more of a type 2 diabetes. However, bank voles caught in nature instead may rather develop a type 1 form of the disease.
  •  
6.
  •  
7.
  • Luo, Zhengkang, et al. (författare)
  • Interleukin-35 Prevents Development of Autoimmune Diabetes Possibly by Maintaining the Phenotype of Regulatory B Cells
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 22:23
  • Tidskriftsartikel (refereegranskat)abstract
    • The anti-inflammatory role of regulatory B cells (Breg cells) has been associated with IL-35 based on studies of experimental autoimmune uveitis and encephalitis. The role of Breg cells and IL-35(+) Breg cells for type 1 diabetes (T1D) remains to be investigated. We studied PBMCs from T1D subjects and healthy controls (HC) and found lowered proportions of Breg cells and IL-35(+) Breg cells in T1D. To elucidate the role of Breg cells, the lymphoid organs of two mouse models of T1D were examined. Lower proportions of Breg cells and IL-35(+) Breg cells were found in the animal models of T1D compared with control mice. In addition, the systemic administration of recombinant mouse IL-35 prevented hyperglycemia after multiple low dose streptozotocin (MLDSTZ) injections and increased the proportions of Breg cells and IL-35(+) Breg cells. A higher proportion of IFN-gamma(+) cells among Breg cells were found in the PBMCs of the T1D subjects. In the MLDSTZ mice, IL-35 administration decreased the proportions of IFN-gamma(+) cells among the Breg cells. Our data illustrate that Breg cells may play an important role in the development of T1D and that IL-35 treatment prevents the development of hyperglycemia by maintaining the phenotype of the Breg cells under an experimental T1D condition.
  •  
8.
  • Luo, Zhengkang, et al. (författare)
  • Kinetics of immune cell responses in the multiple low dose streptozotocin mouse model of type 1 diabetes
  • 2019
  • Ingår i: FASEB BioAdvances. - : Wiley. - 2573-9832. ; 1, s. 538-549
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • In type 1 diabetes (T1D), the insulin-producing β cells are destructed by immune mechanisms. It has been hypothesized that the very first immune response in T1D onset comes from innate immune cells, which further activates the adaptive immune cells to attack the islets. Despite intensive research on characterization of islet-infiltrating immune cells, the kinetics of different immune cells in multiple low-dose streptozotocin (MLDSTZ)-induced T1D mouse model is still much unclear. Therefore, we investigated the proportions of innate immune cells such as neutrophils, dendritic cells (DCs), plasmacytoid dendritic cells (pDCs), macrophages, natural killer (NK) cells, and adaptive immune cells (T and B lymphocytes) in thymi, pancreatic-draining lymph nodes, and spleens of MLDSTZ mice on days 3, 7, 10, and 21 after the first injection of STZ by flow cytometry. The proportions of DCs and B cells were increased from day 3, while the proportions of B-1a lymphocytes and interferon-γ+ cells among NK cells were increased, but NK cells were decreased on day 10 in MLDSTZ-treated mice, illustrating that the initial immune response is induced by DCs and B cells. Later, the proportions of T helper 1 and cytotoxic T cells were increased from day 7, suggesting that the innate immune cells precede adaptive immune cell response in MLDSTZ mice. Altogether, our data demonstrate a possible sequence of events regarding the involvement of DCs, pDCs, NK cells, B-1a lymphocytes, B, and T cells at the early stage of T1D development.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy