SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sanna S) ;lar1:(kth)"

Sökning: WFRF:(Sanna S) > Kungliga Tekniska Högskolan

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feroci, M., et al. (författare)
  • The large observatory for x-ray timing
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
  •  
2.
  • Feroci, M., et al. (författare)
  • LOFT - The large observatory for x-ray timing
  • 2012
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9780819491442 ; , s. 84432D-
  • Konferensbidrag (refereegranskat)abstract
    • The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO's to yearlong transient outbursts. In this paper we report the current status of the project.
  •  
3.
  • Papitto, A., et al. (författare)
  • Pulsating in Unison at Optical and X-Ray Energies : Simultaneous High Time Resolution Observations of the Transitional Millisecond Pulsar PSR J1023+0038
  • 2019
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 882:2
  • Tidskriftsartikel (refereegranskat)abstract
    • PSR J1023+0038 is the first millisecond pulsar discovered to pulsate in the visible band; such a detection took place when the pulsar was surrounded by an accretion disk and also showed X-ray pulsations. We report on the first high time resolution observational campaign of this transitional pulsar in the disk state, using simultaneous observations in the optical (Telescopio Nazionale Galileo, Nordic Optical Telescope, Telescopi Joan Oro), X-ray (XMM-Newton, NuSTAR, NICER), infrared (Gran Telescopio Canarias), and UV (Swift) bands. Optical and X-ray pulsations were detected simultaneously in the X-ray high-intensity mode in which the source spends similar to 70% of the time, and both disappeared in the low mode, indicating a common underlying physical mechanism. In addition, optical and X-ray pulses were emitted within a few kilometers and had similar pulse shapes and distributions of the pulsed flux density compatible with a power-law relation F-nu proportional to nu(-0.7) connecting the optical and the 0.3-45 keV X-ray band. Optical pulses were also detected during flares with a pulsed flux reduced by one-third with respect to the high mode; the lack of a simultaneous detection of X-ray pulses is compatible with the lower photon statistics. We show that magnetically channeled accretion of plasma onto the surface of the neutron star cannot account for the optical pulsed luminosity (similar to 10(31) erg s(-1)). On the other hand, magnetospheric rotation-powered pulsar emission would require an extremely efficient conversion of spin-down power into pulsed optical and X-ray emission. We then propose that optical and X-ray pulses are instead produced by synchrotron emission from the intrabinary shock that forms where a striped pulsar wind meets the accretion disk, within a few light cylinder radii away, similar to 100 km, from the pulsar.
  •  
4.
  • Byström, Sanna, et al. (författare)
  • Affinity Proteomic Profiling of Plasma, Cerebrospinal Fluid, and Brain Tissue within Multiple Sclerosis
  • 2014
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 13:11, s. 4607-4619
  • Tidskriftsartikel (refereegranskat)abstract
    • The brain is a vital organ and because it is well shielded from the outside environment, possibilities for noninvasive analysis are often limited. Instead, fluids taken from the spinal cord or circulatory system are preferred sources for the discovery of candidate markers within neurological diseases. In the context of multiple sclerosis (MS), we applied an affinity proteomic strategy and screened 22 plasma samples with 4595 antibodies (3450 genes) on bead arrays, then defined 375 antibodies (334 genes) for targeted analysis in a set of 172 samples and finally used 101 antibodies (43 genes) on 443 plasma as well as 573 cerebrospinal spinal fluid (CSF) samples. This revealed alteration of protein profiles in relation to MS subtypes for IRF8, IL7, METTL14, SLC30A7, and GAP43. Respective antibodies were subsequently used for immunofluorescence on human post-mortem brain tissue with MS pathology for expression and association analysis. There, antibodies for IRF8, IL7, and METTL14 stained neurons in proximity of lesions, which highlighted these candidate protein targets for further studies within MS and brain tissue. The affinity proteomic translation of profiles discovered by profiling human body fluids and tissue provides a powerful strategy to suggest additional candidates to studies of neurological disorders.
  •  
5.
  • Halakarni, Mahaveer A., et al. (författare)
  • Design of selective and self-cleaning iron aminoclay thin film nanocomposite membranes
  • 2023
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947 .- 1873-3212. ; 456
  • Tidskriftsartikel (refereegranskat)abstract
    • Selective separation using efficient high-performance nanofiltration membranes has the potential for widespread application in multiple fields, including dye desalination, industrial wastewater treatment, and resource recovery from different feed streams. This study focused on the design of selective and self-cleaning nanofiltration membranes by incorporating iron aminoclay nanoparticles in a piperazine-based polyamide active layer supported on an ultrafiltration PAN substrate. Fe-AC nanoparticles and thin film nanocomposites (TFNC) were characterized for their morphology, surface chemistry, roughness, and surface area. In terms of wettability/hydrophilicity, TFNC membranes with Fe-AC incorporated had the lowest contact angle of 33.5 degrees, while that of the pristine TFNC0 membrane was 60.5 degrees. They also had a higher surface negative zeta potential and smoother surface morphology. The TFNC membranes also exhibited higher water fluxes and enhanced selectivity towards molecular separation compared to the control membranes. The water flux of the optimized AC polyamide membrane, TFNC3, was 19.70 +/- 0.5 LMH (L. m- 2.h-1), while that of the pristine TFNC0 membrane was 4.85 +/- 0.6 LMH at 4 bar. 98.0-99.0 % rejection of model organic moieties was achieved at a constant flux (Congo red, Eriochrome Black T, methylene blue, Rhodamine 6G, and Crystal violet). When simulated wastewater was purified, the Fe-AC TFNC showed 98.0 % rejection of dyes and 20.0 % rejection of inorganic salts. In long-term filtration studies (>210 h) using simulated wastewater spiked with multiple foulants, >98.0 % rejection of organic matter and foulants was recorded with a stable long-term flux profile. A leaching study confirmed that the membranes were structurally stable, even after the self-cleaning process and at elevated temperatures, without any significant reduction in flux or rejection. Comparing the fouling performance between TFNC3 membranes and commercial reverse osmosis (RO) membranes, the FDR and Flux Recovery Ratio (FRR) values of commercial RO membranes were 58.0 % and 73.0 %, while those of TFNC3 were 47.0 % and 97.0 %, respectively. The results show that the membranes have lower fouling values and higher FRR values when iron clay is present. These results demonstrate the potential of the membranes for effective pre-treatment of various industrial wastewaters and selective separation.
  •  
6.
  • Häussler, Ragna S., et al. (författare)
  • Systematic Development of Sandwich Immunoassays for the Plasma Secretome
  • 2019
  • Ingår i: Proteomics. - : Wiley. - 1615-9853 .- 1615-9861.
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasma proteome offers a clinically useful window into human health. Recent advances from highly multiplexed assays now call for appropriate pipelines to validate individual candidates. Here, a workflow is developed to build dual binder sandwich immunoassays (SIA) and for proteins predicted to be secreted into plasma. Utilizing suspension bead arrays, ≈1800 unique antibody pairs are first screened against 209 proteins with recombinant proteins as well as EDTA plasma. Employing 624 unique antibodies, dilution-dependent curves in plasma and concentration-dependent curves of full-length proteins for 102 (49%) of the targets are obtained. For 22 protein assays, the longitudinal, interindividual, and technical performance is determined in a set of plasma samples collected from 18 healthy subjects every third month over 1 year. Finally, 14 of these assays are compared with with SIAs composed of other binders, proximity extension assays, and affinity-free targeted mass spectrometry. The workflow provides a multiplexed approach to screen for SIA pairs that suggests using at least three antibodies per target. This design is applicable for a wider range of targets of the plasma proteome, and the assays can be applied for discovery but also to validate emerging candidates derived from other platforms.
  •  
7.
  • Kajava, J. J. E., et al. (författare)
  • X-ray dips and a complex UV/X-ray cross-correlation function in the black hole candidate MAXI J1820+070
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966 .- 1745-3925 .- 1745-3933. ; 488:1, s. L18-L23
  • Tidskriftsartikel (refereegranskat)abstract
    • MAXI J1820+070, a black hole candidate first detected in early 2018 March, was observed by XMM-Newton during the outburst rise. In this letter we report on the spectral and timing analysis of the XMM-Newton X-ray and UV data, as well as contemporaneous X-ray data from the Swift satellite. The X-ray spectrum is well described by a hard thermal Comptonization continuum. The XMM-Newton X-ray light curve shows a pronounced dipping interval, and spectral analysis indicates that it is caused by a moderately ionized partial covering absorber. The XMM-Newton/OM U-filter data do not reveal any signs of the 17 h orbital modulation that was seen later on during the outburst decay. The UV/X-ray cross-correlation function shows a complex shape, with a peak at positive lags of about 4 s and a precognition dip at negative lags, which is absent during the X-ray dipping episode. Such shape could arise if the UV emission comes partially from synchrotron self-Compton emission near the black hole, as well as from reprocessing of the X-rays in the colder accretion disc further out.
  •  
8.
  • Papitto, A., et al. (författare)
  • The INTEGRAL view of the pulsating hard X-ray sky : from accreting and transitional millisecond pulsars to rotation-powered pulsars and magnetars
  • 2020
  • Ingår i: New astronomy reviews (Print). - : Elsevier BV. - 1387-6473 .- 1872-9630. ; 91
  • Tidskriftsartikel (refereegranskat)abstract
    • In the last 25 years a new generation of X-ray satellites imparted a significant leap forward in our knowledge of X-ray pulsars. The discovery of accreting and transitional millisecond pulsars proved that disk accretion can spin up a neutron star to a very high rotation speed. The detection of MeV-GeV pulsed emission from a few hundreds of rotation-powered pulsars probed particle acceleration in the outer magnetosphere, or even beyond. Also, a population of two dozens of magnetars has emerged. INTEGRAL played a central role to achieve these results by providing instruments with high temporal resolution up to the hard X-ray/soft, gamma-ray band and a large field of view imager with good angular resolution to spot hard X-ray transients. In this article we review the main contributions by INTEGRAL to our understanding of the pulsating hard X-ray sky, such as the discovery and characterization of several accreting and transitional millisecond pulsars, the generation of the first catalog of hard X-ray/soft gamma-ray rotation-powered pulsars, the detection of polarization in the hard X-ray emission from the Crab pulsar, and the discovery of persistent hard X-ray emission from several magnetars.
  •  
9.
  • Wäneskog, Marcus, et al. (författare)
  • Escherichia coli EC93 deploys two plasmid- encoded class I contact- dependent growth inhibition systems for antagonistic bacterial interactions
  • 2021
  • Ingår i: Microbial Genomics. - : MICROBIOLOGY SOC. - 2057-5858. ; 7:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The phenomenon of contact- dependent growth inhibition (CDI) and the genes required for CDI (cdiBAI) were identified and isolated in 2005 from an Escherichia coli isolate (EC93) from rats. Although the cdiBAIEC93 locus has been the focus of extensive research during the past 15 years, little is known about the EC93 isolate from which it originates. Here we sequenced the EC93 genome and find two complete and functional cdiBAI loci (including the previously identified cdi locus), both carried on a large 127 kb plasmid. These cdiBAI systems are differentially expressed in laboratory media, enabling EC93 to outcompete E. coli cells lacking cognate cdiI immunity genes. The two CDI systems deliver distinct effector peptides that each dissipate the membrane potential of target cells, although the two toxins display different toxic potencies. Despite the differential expression and toxic potencies of these CDI systems, both yielded similar competitive advantages against E. coli cells lacking immunity. This can be explained by the fact that the less expressed cdiBAI system (cdiBAIEC93-2) delivers a more potent toxin than the highly expressed cdiBAIEC93-1 system. Moreover, our results indicate that unlike most sequenced CDI+ bacterial isolates, the two cdi loci of E. coli EC93 are located on a plasmid and are expressed in laboratory media.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy