SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Saraste A) ;pers:(Sörensen Jens)"

Sökning: WFRF:(Saraste A) > Sörensen Jens

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bouyoucef, S E, et al. (författare)
  • Poster Session 2 : Monday 4 May 2015, 08
  • 2015
  • Ingår i: European Heart Journal Cardiovascular Imaging. - : Oxford University Press (OUP). - 2047-2404 .- 2047-2412. ; 16 Suppl 1
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Ferreira, Mjv, et al. (författare)
  • Poster Session 3 : Tuesday 5 May 2015, 08
  • 2015
  • Ingår i: European Heart Journal Cardiovascular Imaging. - : Oxford University Press (OUP). - 2047-2404 .- 2047-2412. ; 16 Suppl 1
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  •  
4.
  • Danad, Ibrahim, et al. (författare)
  • Quantitative Assessment of Myocardial Perfusion in the Detection of Significant Coronary Artery Disease Cutoff Values and Diagnostic Accuracy of Quantitative [O-15]H2O PET Imaging
  • 2014
  • Ingår i: Journal of the American College of Cardiology. - : Elsevier BV. - 0735-1097 .- 1558-3597. ; 64:14, s. 1464-1475
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND Recent studies have demonstrated improved diagnostic accuracy for detecting coronary artery disease (CAD) when myocardial blood flow (MBF) is quantified in absolute terms, but there are no uniformly accepted cutoff values for hemodynamically significant CAD. OBJECTIVES The goal of this study was to determine cutoff values for absolute MBF and to evaluate the diagnostic accuracy of quantitative [O-15]H2O positron emission tomography (PET). METHODS A total of 330 patients underwent both quantitative [O-15]H2O PET imaging and invasive coronary angiography in conjunction with fractional flow reserve measurements. A stenosis >90% and/or fractional flow reserve <= 0.80 was considered obstructive; a stenosis <30% and/or fractional flow reserve >0.80 was nonobstructive. RESULTS Hemodynamically significant CAD was diagnosed in 116 (41%) of 281 patients who fulfilled study criteria for CAD. Resting perfusion was 1.00 +/- 0.25 and 0.92 +/- 0.23 ml/min/g in regions supplied by nonstenotic and significantly stenosed vessels, respectively (p < 0.001). During stress, perfusion increased to 3.26 +/- 1.04 ml/min/g and 1.73 +/- 0.67 ml/min/g, respectively (p < 0.001). The optimal cutoff values were 2.3 and 2.5 for hyperemic MBF and myocardial flow reserve, respectively. For MBF, these cutoff values showed a sensitivity, specificity, and accuracy for detecting significant CAD of 89%, 84%, and 86%, respectively, at a per-patient level and 87%, 85%, and 85% at a per-vessel level. The corresponding myocardial flow reserve values were 86%, 72%, and 78% (per patient) and 80%, 82%, and 81% (per vessel). Age and sex significantly affected diagnostic accuracy of quantitative PET. CONCLUSIONS Quantitative MBF measurements with the use of [O-15]H2O PET provided high diagnostic performance, but both sex and age should be taken into account.
  •  
5.
  • Hoek, Roel, et al. (författare)
  • Determining Hemodynamically Significant Coronary Artery Disease : Patient-Specific Cutoffs in Quantitative Myocardial Blood Flow Using [15O]H2O PET Imaging
  • 2024
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667. ; 65:7, s. 1113-1121
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently, cutoffs of quantitative [15O]H2O PET to detect fractional flow reserve (FFR)-defined coronary artery disease (CAD) were derived from a single cohort that included patients without prior CAD. However, prior CAD, sex, and age can influence myocardial blood flow (MBF). Therefore, the present study determined the influence of prior CAD, sex, and age on optimal cutoffs of hyperemic MBF (hMBF) and coronary flow reserve (CFR) and evaluated whether cutoff optimization enhanced diagnostic performance of quantitative [15O]H2O PET against an FFR reference standard. Methods: Patients with chronic coronary symptoms underwent [15O]H2O PET and invasive coronary angiography with FFR. Optimal cutoffs for patients with and without prior CAD and subpopulations based on sex and age were determined. Results: This multicenter study included 560 patients. Optimal cutoffs were similar for patients with (n = 186) and without prior CAD (hMBF, 2.3 vs. 2.3 mL center dot min-1 center dot g-1; CFR, 2.7 vs. 2.6). Females (n = 190) had higher hMBF cutoffs than males (2.8 vs. 2.3 mL center dot min-1 center dot g-1), whereas CFRs were comparable (2.6 vs. 2.7). However, female sex-specific hMBF cutoff implementation decreased diagnostic accuracy as compared with the cutoff of 2.3 mL center dot min-1 center dot g-1 (72% vs. 82%, P , 0.001). Patients aged more than 70 y (n = 79) had lower hMBF (1.7 mL center dot min-1 center dot g-1) and CFR (2.3) cutoffs than did patients aged 50 y or less, 51-60 y, and 61-70 y (hMBF, 2.3-2.4 mL center dot min-1 center dot g-1; CFR, 2.7). Age-specific cutoffs in patients aged more than 70 y yielded comparable accuracy to the previously established cutoffs (hMBF, 72% vs. 76%, P = 0.664; CFR, 80% vs. 75%, P = 0.289). Conclusion: Patients with and without prior CAD had similar [15O]H2O PET cutoffs for detecting FFR-defined significant CAD. Stratifying patients according to sex and age led to different optimal cutoffs; however, these values did not translate into an increased overall accuracy as compared with previously established thresholds for MBF.
  •  
6.
  • Stuijfzand, Wijnand J, et al. (författare)
  • Relative flow reserve derived from quantitative perfusion imaging may not outperform stress myocardial blood flow for identification of hemodynamically significant coronary artery disease
  • 2015
  • Ingår i: Circulation Cardiovascular Imaging. - 1941-9651 .- 1942-0080. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Quantitative myocardial perfusion imaging is increasingly used for the diagnosis of coronary artery disease. Quantitative perfusion imaging allows to noninvasively calculate fractional flow reserve (FFR). This so-called relative flow reserve (RFR) is defined as the ratio of hyperemic myocardial blood flow (MBF) in a stenotic area to hyperemic MBF in a normal perfused area. The aim of this study was to assess the value of RFR in the detection of significant coronary artery disease.METHODS AND RESULTS: From a clinical population of patients with suspected coronary artery disease who underwent oxygen-15-labeled water cardiac positron emission tomography and invasive coronary angiography, 92 patients with single- or 2-vessel disease were included. Intermediate lesions (diameter stenosis, 30%-90%; n=75) were interrogated by FFR. Thirty-eight (41%) vessels were deemed hemodynamically significant (>90% stenosis or FFR≤0.80). Hyperemic MBF, coronary flow reserve, and RFR were lower for vessels with a hemodynamically significant lesion (2.01±0.78 versus 2.90±1.16 mL·min(-1)·g(-1); P<0.001, 2.27±1.03 versus 3.10±1.29; P<0.001, and 0.67±0.23 versus 0.93±0.15; P<0.001, respectively). The correlation between RFR and FFR was moderate (r=0.54; P<0.01). Receiver operator characteristic curve analysis showed an area under the curve of 0.82 for RFR, which was not significantly higher compared with that for hyperemic MBF and coronary flow reserve (0.76; P=0.32 and 0.72; P=0.08, respectively).CONCLUSIONS: Noninvasive estimation of FFR by quantitative perfusion positron emission tomography by calculating RFR is feasible, yet only a trend toward a slight improvement of diagnostic accuracy compared with hyperemic MBF assessment was determined.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy