SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sarchiapone M) "

Sökning: WFRF:(Sarchiapone M)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Diakaki, M., et al. (författare)
  • Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN -€“ n_TOF
  • 2016
  • Konferensbidrag (refereegranskat)abstract
    • The U-238 fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The U-238 fission cross section has been measured relative to the U-235 fission cross section at CERN - n_TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards.
  •  
2.
  • Paradela, C., et al. (författare)
  • High-accuracy determination of the 238U/235U fission cross section ratio up to ~1 GeV at n_TOF at CERN
  • 2015
  • Ingår i: Physical Review C. Nuclear Physics. - 0556-2813 .- 1089-490X. ; 91, s. 024602-
  • Tidskriftsartikel (refereegranskat)abstract
    • The U238 to U235 fission cross section ratio has been determined at n_TOF up to ≈1 GeV, with two different detection systems, in different geometrical configurations. A total of four datasets has been collected and compared. They are all consistent to each other within the relative systematic uncertainty of 3–4%. The data collected at n_TOF have been suitably combined to yield a unique fission cross section ratio as a function of neutron energy. The result confirms current evaluations up to 200 MeV. Good agreement is also observed with theoretical calculations based on the INCL++/Gemini++ combination up to the highest measured energy. The n_TOF results may help solve a long-standing discrepancy between the two most important experimental datasets available so far above 20 MeV, while extending the neutron energy range for the first time up to ≈1 GeV.
  •  
3.
  • Culverhouse, R. C., et al. (författare)
  • Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression
  • 2018
  • Ingår i: ; 23:1, s. 133-142
  • Tidskriftsartikel (refereegranskat)abstract
    • The hypothesis that the S allele of the 5-HTTLPR serotonin transporter promoter region is associated with increased risk of depression, but only in individuals exposed to stressful situations, has generated much interest, research and controversy since first proposed in 2003. Multiple meta-analyses combining results from heterogeneous analyses have not settled the issue. To determine the magnitude of the interaction and the conditions under which it might be observed, we performed new analyses on 31 data sets containing 38 802 European ancestry subjects genotyped for 5-HTTLPR and assessed for depression and childhood maltreatment or other stressful life events, and meta-analysed the results. Analyses targeted two stressors (narrow, broad) and two depression outcomes (current, lifetime). All groups that published on this topic prior to the initiation of our study and met the assessment and sample size criteria were invited to participate. Additional groups, identified by consortium members or self-identified in response to our protocol (published prior to the start of analysis) with qualifying unpublished data, were also invited to participate. A uniform data analysis script implementing the protocol was executed by each of the consortium members. Our findings do not support the interaction hypothesis. We found no subgroups or variable definitions for which an interaction between stress and 5-HTTLPR genotype was statistically significant. In contrast, our findings for the main effects of life stressors (strong risk factor) and 5-HTTLPR genotype (no impact on risk) are strikingly consistent across our contributing studies, the original study reporting the interaction and subsequent meta-analyses. Our conclusion is that if an interaction exists in which the S allele of 5-HTTLPR increases risk of depression only in stressed individuals, then it is not broadly generalisable, but must be of modest effect size and only observable in limited situations.
  •  
4.
  • Paradela, C., et al. (författare)
  • High accuracy 235U(n,f) data in the resonance energy region
  • 2016
  • Konferensbidrag (refereegranskat)abstract
    • The U-235 neutron-induced cross section is widely used as reference cross section for measuring other fission cross sections, but in the resonance region it is not considered as an IAEA standard because of the scarce experimental data covering the full region. In this work, we deal with a new analysis of the experimental data obtained with a detection setup based on parallel plate ionization chambers (PPACs) at the CERN n_TOF facility in the range from 1 eV to 10 keV. The relative cross section has been normalised to the IAEA value in the region between 7.8 and 11 eV, which is claimed as well-known. Comparison with the ENDF/B-VII evaluation and the IAEA reference file from 100 eV to 10 keV are provided.
  •  
5.
  • Pinsky, L., et al. (författare)
  • Measurement of Fragmentation Products including Angular Distributions for 3, 5, and 10 GeV/A C and Si on several nuclear targets at the AGS
  • 2010
  • Ingår i: 2009 12th International Conference on Nuclear Reaction Mechanisms, NRM 2009; Varenna; Italy; 15 June 2009 through 19 June 2009. - 2078-8835. ; 2, s. 431-437
  • Konferensbidrag (refereegranskat)abstract
    • Motivated by differences in the predicted fragmentation of heavy ions at energies around 5 GeV/A as employed in the event generators used by the FLUKA Monte Carlo Code [1], a set of measurements were carried out at the AGS facility at the Brookhaven National Laboratory to determine as much information as possible about the cross sections to allow harmonization of those event generators for these incident lab energies. The FLUKA Code employs the RQMD event generator of Sorge [2] for heavy ion interactions starting at 100 MeV/A and extending into the region around 5 GeV/A. Above those energies the DPMJET code of Ranft and Roesler [3] is typically employed to simulate such interactions. The detailed predictions of these event generators had some disagreement in the vicinity of this crossover energy and in order to tune these codes to be in closer harmony at the transition, and of course to be simulating nature as closely as possible, data were taken at 3, 5 and 10 GeV/A with beams of Fe, Si and C on a variety of targets including C, A1. Fe and Cu. The Fe data have not been fully analyzed, but results from the C and Si beams are available and the forward fragment spectrum along with a measurement of the charged particle angular distribution in a set of Si strip detectors out to about 45 degrees in the lab are available. These include sufficient statistics to provide the charged particle distributions as a function of the major projectile fragment. The detectors used in this measurement were based on what were reasonably available to us, and as such were limited in capability, and required separate data acquisition systems. Nevertheless, spectra were obtained that should be sufficient to enable the harmonization of the event generator codes at the crossover energy. This paper discusses only the experimental results and not the impact of those results on the FLUKA code.
  •  
6.
  • Battistoni, G, et al. (författare)
  • FLUKA Monte Carlo calculations for hadrontherapy application
  • 2013
  • Ingår i: CERN-Proceedings-2012-002. ; , s. 461-467
  • Konferensbidrag (refereegranskat)abstract
    • Monte Carlo (MC) codes are increasingly spreading in the hadrontherapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code for application to hadrontherapy demands accurate and reliable physical models for the description of the transport and the interaction of all components of the expected radiation field (ions, hadrons, electrons, positrons and photons). This contribution will address the specific case of the general-purpose particle and interaction code FLUKA. In this work, an application of FLUKA will be presented, i.e. establishing CT (computed tomography)-based calculations of physical and RBE (relative biological effectiveness)-weighted dose distributions in scanned carbon ion beam therapy.
  •  
7.
  • Battistoni, G., et al. (författare)
  • The FLUKA code and its use in hadron therapy
  • 2008
  • Ingår i: Nuovo Cimento della Societa Italiana di Fisica C. - Italian Physical Society. - 1124-1896. ; 31:1, s. 69-75
  • Tidskriftsartikel (refereegranskat)abstract
    • FLUKA is a multipurpose Monte Carto code describing transport and interaction with matter of a, large variety of particles over a wide energy range ill complex geometries. FLUKA is successfully applied ill several fields, including, but not only particle physics, cosmic-ray physics, dosimetry, radioprotection, hadron therapy. space radiation, accelerator design and neutronics. Here we briefly review recent model developments and provide examples of applications to hadron therapy, including calculation of physical and biological dose for comparison with analytical treatment planning engines as well as beta(+)-activation for therapy monitoring by means of positron emission tomography.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy