SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Saunders Manu E.) "

Search: WFRF:(Saunders Manu E.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lichtenberg, Elinor M., et al. (author)
  • A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes
  • 2017
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:11, s. 4946-4957
  • Journal article (peer-reviewed)abstract
    • Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.
  •  
2.
  • B. Lanuza, Jose, et al. (author)
  • Covariation among reproductive traits in flowering plants shapes their interactions with pollinators
  • 2023
  • In: Functional Ecology. - 0269-8463. ; 37:7, s. 2072-2084
  • Journal article (peer-reviewed)abstract
    • Globally, plants display enormous variation in life-history strategies and trait combinations. However, evidence suggests that evolutionary and physiological constraints limit the number of plant ecological strategies. Although there have been recent advances in understanding correlations among plant traits, reproductive traits are rarely considered, despite their key role in shaping plant life-history strategies and interactions with pollinators. Here, using a global dataset of 18 reproductive traits for 1506 species, we investigate the reproductive spectrum of flowering plants to identify how it shapes interactions with pollinators. We show that over 50% of all trait variation is explained by the first two reproductive axes, which represent the negative correlation between flower number and flower size, and the negative correlation between autonomous selfing and floral display size. In addition, these reproductive axes were associated with the identity and number of visits of the distinct pollinator guilds. However, reproductive axes explain a relatively small amount of variance in pollinator interactions highlighting the need to incorporate other factors along with reproductive traits to fully explain large-scale patterns of plant–pollinator interactions. Our study identifies the major reproductive trait correlations in flowering plants and their role in shaping plant–pollinator interactions at a macro-ecological scale. These findings emphasise the importance of considering reproductive traits in the global spectrum of plant form and function, and the need to explore beyond floral morphological traits to broaden our understanding of plant–pollinator interactions. Read the free Plain Language Summary for this article on the Journal blog.
  •  
3.
  • Saunders, Manu E., et al. (author)
  • Bringing ecology blogging into the scientific fold : measuring reach and impact of science community blogs
  • 2017
  • In: Royal Society Open Science. - : The Royal Society. - 2054-5703. ; 4:10
  • Research review (peer-reviewed)abstract
    • The popularity of science blogging has increased in recent years, but the number of academic scientists who maintain regular blogs is limited. The role and impact of science communication blogs aimed at general audiences is often discussed, but the value of science community blogs aimed at the academic community has largely been overlooked. Here, we focus on our own experiences as bloggers to argue that science community blogs are valuable to the academic community. We use data fromour own blogs (n=7) to illustrate some of the factors influencing reach and impact of science community blogs. We then discuss the value of blogs as a standalone medium, where rapid communication of scholarly ideas, opinions and short observational notes can enhance scientific discourse, and discussion of personal experiences can provide indirect mentorship for junior researchers and scientists from underrepresented groups. Finally, we argue that science community blogs can be treated as a primary source and provide some key points to consider when citing blogs in peer-reviewed literature.
  •  
4.
  • Saunders, Manu E., et al. (author)
  • Climate mediates roles of pollinator species in plant–pollinator networks
  • 2023
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 32:4, s. 511-518
  • Journal article (peer-reviewed)abstract
    • Aim: Understanding how climate conditions influence plant–pollinator interactions at the global scale is crucial to understand how pollinator communities and ecosystem function respond to environmental change. Here, we investigate whether climate drives differences in network roles of the main insect pollinator orders: Diptera, Coleoptera, Lepidoptera and Hymenoptera. Location: Global. Time period: 1968–2020. Major taxa studied: Diptera, Coleoptera, Lepidoptera and Hymenoptera. Methods: We collated plant–pollinator networks from 26 countries and territories across the five main Köppen–Geiger climate zones. In total, we compiled data from 101 networks that included >1500 plant species from 167 families and >2800 pollinator species from 163 families. We assessed differences in the composition of plant–pollinator interactions among climate zones using a permutational ANOVA. We calculated standard network metrics for pollinator taxonomic groups and used Bayesian generalized mixed models to test whether climate zone influenced the proportion of pollinator network links and the level of pollinator generalism. Results: We found that climate is a strong driver of compositional dissimilarities between plant–pollinator interactions. Relative to other taxa, bees and flies made up the greatest proportion of network links across climate zones. When network size was accounted for, bees were the most generalist pollinator group in the tropics, whereas non-bee Hymenoptera were the most generalist in arid zones, and syrphid flies were the most generalist in polar networks. Main conclusions: We provide empirical evidence at the global scale that climate strongly influences the roles of different pollinator taxa within networks. Importantly, non-bee taxa, particularly flies, play central network roles across most climate zones, despite often being overlooked in pollination research and conservation. Our results identify the need for greater understanding of how global environmental change affects plant–pollinator interactions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view