SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sauvaud J. A) ;pers:(Le Contel O.)"

Sökning: WFRF:(Sauvaud J. A) > Le Contel O.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fadanelli, S., et al. (författare)
  • Four-Spacecraft Measurements of the Shape and Dimensionality of Magnetic Structures in the Near-Earth Plasma Environment
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 124:8, s. 6850-6868
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new method for determining the main relevant features of the local magnetic field configuration, based entirely on the knowledge of the magnetic field gradient four‐spacecraft measurements. The method, named “magnetic configuration analysis” (MCA), estimates the spatial scales on which the magnetic field varies locally. While it directly derives from the well‐known magnetic directional derivative and magnetic rotational analysis procedures (Shi et al., 2005, htpps://doi.org/10.1029/2005GL022454; Shen et al., 2007, https://doi.org/10.1029/2005JA011584), MCA was specifically designed to address the actual magnetic field geometry. By applying MCA to multispacecraft data from the Magnetospheric Multiscale (MMS) satellites, we perform both case and statistical analyses of local magnetic field shape and dimensionality at very high cadence and small scales. We apply this technique to different near‐Earth environments and define a classification scheme for the type of configuration observed. While our case studies allow us to benchmark the method with those used in past works, our statistical analysis unveils the typical shape of magnetic configurations and their statistical distributions. We show that small‐scale magnetic configurations are generally elongated, displaying forms of cigar and blade shapes, but occasionally being planar in shape like thin pancakes (mostly inside current sheets). Magnetic configurations, however, rarely show isotropy in their magnetic variance. The planar nature of magnetic configurations and, most importantly, their scale lengths strongly depend on the plasma β parameter. Finally, the most invariant direction is statistically aligned with the electric current, reminiscent of the importance of electromagnetic forces in shaping the local magnetic configuration.
  •  
2.
  • Kacem, I., et al. (författare)
  • Magnetic Reconnection at a Thin Current Sheet Separating Two Interlaced Flux Tubes at the Earth's Magnetopause
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 123:3, s. 1779-1793
  • Tidskriftsartikel (refereegranskat)abstract
    • The occurrence of spatially and temporally variable reconnection at the Earth's magnetopause leads to the complex interaction of magnetic fields from the magnetosphere and magnetosheath. Flux transfer events (FTEs) constitute one such type of interaction. Their main characteristics are (1) an enhanced core magnetic field magnitude and (2) a bipolar magnetic field signature in the component normal to the magnetopause, reminiscent of a large-scale helicoidal flux tube magnetic configuration. However, other geometrical configurations which do not fit this classical picture have also been observed. Using high-resolution measurements from the Magnetospheric Multiscale mission, we investigate an event in the vicinity of the Earth's magnetopause on 7 November 2015. Despite signatures that, at first glance, appear consistent with a classic FTE, based on detailed geometrical and dynamical analyses as well as on topological signatures revealed by suprathermal electron properties, we demonstrate that this event is not consistent with a single, homogenous helicoidal structure. Our analysis rather suggests that it consists of the interaction of two separate sets of magnetic field lines with different connectivities. This complex three-dimensional interaction constructively conspires to produce signatures partially consistent with that of an FTE. We also show that, at the interface between the two sets of field lines, where the observed magnetic pileup occurs, a thin and strong current sheet forms with a large ion jet, which may be consistent with magnetic flux dissipation through magnetic reconnection in the interaction region.
  •  
3.
  • Baumjohann, W., et al. (författare)
  • Dynamics of thin current sheets : Cluster observations
  • 2007
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 25:6, s. 1365-1389
  • Forskningsöversikt (refereegranskat)abstract
    • The paper tries to sort out the specific signatures of the Near Earth Neutral Line (NENL) and the Current Disruption (CD) models. and looks for these signatures in Cluster data from two events. For both events transient magnetic si-natures are observed, together with fast ion flows. In the simplest form of NENL scenario, with a large-scale two-dimensional reconnection site, quasi-invariance along Y is expected. Thus the magnetic signatures in the S/C frame are interpreted as relative motions, along the X or Z direction, of a quasi-steady X-line, with respect to the S/C. In the simplest form of CD scenario an azimuthal modulation is expected. Hence the signatures in the S/C frame are interpreted as signatures of azimuthally (along Y) moving current system associated with low frequency fluctuations of J(y) and the corresponding field-aligned currents Event I covers a pseudo-breakup, developing only at high latitudes. First, a thin (H approximate to 2000Km approximate to 2 rho(i), with pi the ion gyroradius) Current Sheet (CS) is found to be quiet. A slightly thinner CS (H approximate to 1000-2000 km approximate to 1-2 rho(i)), crossed about 30 min later, is found to be active. with fast earthward ion flow bursts (300-600 km/s) and simultaneous large amplitude fluctuations (delta B/B similar to 1). In the quiet CS the current density J(y) is carried by ions. Conversely, in the active CS ions are moving eastward; the westward current is carried by electrons that move eastward, faster than ions. Similarly, the velocity of earthward flows (300-600 km/s), observed during the active period. maximizes near or at the CS center. During the active phase of Event I no signature of the crossing of an X-line is identified, but an X-line located beyond Cluster could account for the observed ion flows, provided that it is active for at least 20 min. Ion flow bursts can also be due to CD and to the corresponding dipolarizations which are associated with changes in the current density. Yet their durations are shorter than the duration of the active period. While the overall partial derivative Bz/partial derivative t is too weak to accelerate ions up to the observed velocities, short duration partial derivative B-z/partial derivative t can produce the azimuthal electric field requested to account for the observed ion flow bursts. The corresponding large amplitude perturbations are shown to move eastward. which suggests that the reduction in the tail current could be achieved via a series of eastward traveling partial dipolarisations/CD. The second event is much more active than the first one. The observed flapping of the CS corresponds to an azimuthally propagating wave. A reversal in the proton flow velocity, from 1000 to + 1000 km/s, is measured by CODIF. The overall flow reversal, the associated change in the sign of B-z and the relationship between B-x and B-y suggest that the spacecraft are moving with respect to an X-line and its associated Hall-structure. Yet, a simple tailward retreat of a large-scale X-line cannot account for all the observations, since several flow reversals are observed. These quasi-periodic flow reversals can also be associated with an azimuthal motion of the low frequency oscillations. Indeed, at the beginning of the interval B-y varies rapidly along the Y direction; the magnetic signature is three-dimensional and essentially corresponds to a structure of filamentary field-aligned current, moving eastward at similar to 200 km/s. The transverse size of the structure is similar to 1000 km. Similar structures are observed before and after. Thesefilamentary structures are consistent with an eastward propagation of an azimuthal modulation associated with a current system J(y), J(x). During Event 1, signatures of filamentary field-aligned current structures are also observed, in association with modulations of J(y). Hence, for both events the structure of the magnetic fields and currents is three-dimensional.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy