SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Scheele C.) ;pers:(Pedersen B K)"

Sökning: WFRF:(Scheele C.) > Pedersen B K

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Franks, P. W., et al. (författare)
  • Genomic variants at the PINK1 locus are associated with transcript abundance and plasma nonesterified fatty acid concentrations in European whites
  • 2008
  • Ingår i: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 22:9, s. 3135-3145
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to characterize associations between PINK1 genotypes, PINK1 transcript levels, and metabolic phenotypes in healthy adults and those with type 2 diabetes (T2D). We measured PINK1 skeletal muscle transcript levels and 8 independent PINK1 single nucleotide polymorphisms (SNPs) in a cohort of 208 Danish whites and in a cohort of 1701 British whites (SNPs and metabolic phenotypes only). Furthermore, we assessed the effects of PINK1 transcript ablation in primary adipocytes using RNA interference (RNAi). Six PINK1 SNPs were associated with PINK1 transcript levels (P < 0.04 to P < 0.0001). Obesity modified the association between PINK1 transcript levels and T2D risk (interaction P=0.005); transcript levels were inversely related with T2D in obese (n=105) [odds ratio (OR) per SD increase in expression levels=0.44; 95% confidence interval (CI): 0.23, 0.84; P=0.013] but not in nonobese (n=103) (OR=1.20; 95% CI: 0.82, 1.76; P=0.34) individuals. In the British cohort, several PINK1 SNPs were associated with plasma nonesterified fatty acid concentrations. Nominal genotype associations were also observed for fasting glucose, 2-h glucose, and maximal oxygen consumption, although these were not statistically significant after correcting for multiple testing. In primary adipocytes, Pink1 knockdown affected fatty acid binding protein 4 (Fabp4) expression, indicating that PINK1 may influence substrate metabolism. We demonstrate that PINK1 polymorphisms are associated with PINK1 transcript levels and measures of fatty acid metabolism in a concordant manner, whereas our RNAi data imply that PINK1 may indirectly influence lipid metabolism.
  •  
2.
  • Henriksen, T. I., et al. (författare)
  • Dysregulated autophagy in muscle precursor cells from humans with type 2 diabetes
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Autophagy is active during cellular remodeling including muscle differentiation. Muscle differentiation is dysregulated in type 2 diabetes and we therefore hypothesize that muscle precursor cells from people with type 2 diabetes (T2DM) have a dysregulation of their autophagy leading to impaired myogenesis. Muscle precursor cells were isolated from people with T2DM or healthy controls and differentiated in vitro. Autophagy marker levels were assessed by immunoblotting. Differentially expressed autophagy-related genes between healthy and T2DM groups were identified based on a previously published RNA-sequencing data-set, which we verified by RT-qPCR. siRNA was used to assess the function of differentially expressed autophagy genes. Basal autophagy increases during human muscle differentiation, while T2DM muscle cells have reduced levels of autophagy marker ATG7 and show a blunted response to starvation. Moreover, we demonstrate that the 3 non-canonical autophagy genes DRAM1, VAMP8 and TP53INP1 as differentially expressed between healthy and T2DM groups during myoblast differentiation, and that T53INP1 knock-down alters expression of both pro-and anti-apoptotic genes. In vitro differentiated T2DM muscle cells show differential expression of autophagy-related genes. These genes do not regulate myogenic transcription factors but may rather be involved in p53-associated myoblast apoptosis during early myogenesis.
  •  
3.
  • Nilsson, Emma A, et al. (författare)
  • Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue From Subjects With Type 2 Diabetes
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 63:9, s. 2962-2976
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetics, epigenetics, and environment may together affect the susceptibility for type 2 diabetes (T2D). Our aim was to dissect molecular mechanisms underlying T2D using genome-wide expression and DNA methylation data in adipose tissue from monozygotic twin pairs discordant for T2D and independent case-control cohorts. In adipose tissue from diabetic twins, we found decreased expression of genes involved in oxidative phosphorylation; carbohydrate, amino acid, and lipid metabolism; and increased expression of genes involved in inflammation and glycan degradation. The most differentially expressed genes included ELOVL6, GYS2, FADS1, SPP1 (OPN), CCL18, and IL1RN. We replicated these results in adipose tissue from an independent case-control cohort. Several candidate genes for obesity and T2D (e.g., IRS1 and VEGFA) were differentially expressed in discordant twins. We found a heritable contribution to the genome-wide DNA methylation variability in twins. Differences in methylation between monozygotic twin pairs discordant for T2D were subsequently modest. However, 15,627 sites, representing 7,046 genes including PPARG, KCNQ1, TCF7L2, and IRS1, showed differential DNA methylation in adipose tissue from unrelated subjects with T2D compared with control subjects. A total of 1,410 of these sites also showed differential DNA methylation in the twins discordant for T2D. For the differentially methylated sites, the heritability estimate was 0.28. We also identified copy number variants (CNVs) in monozygotic twin pairs discordant for T2D. Taken together, subjects with T2D exhibit multiple transcriptional and epigenetic changes in adipose tissue relevant to the development of the disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy