SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Scheele Camilla) ;pers:(Pedersen Maria)"

Sökning: WFRF:(Scheele Camilla) > Pedersen Maria

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Davegårdh, Cajsa, et al. (författare)
  • Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects
  • 2017
  • Ingår i: BMC Medicine. - : Springer Science and Business Media LLC. - 1741-7015. ; 15:1, s. 1-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Human skeletal muscle stem cells are important for muscle regeneration. However, the combined genome-wide DNA methylation and expression changes taking place during adult myogenesis have not been described in detail and novel myogenic factors may be discovered. Additionally, obesity is associated with low relative muscle mass and diminished metabolism. Epigenetic alterations taking place during myogenesis might contribute to these defects. Methods: We used Infinium HumanMethylation450 BeadChip Kit (Illumina) and HumanHT-12 Expression BeadChip (Illumina) to analyze genome-wide DNA methylation and transcription before versus after differentiation of primary human myoblasts from 14 non-obese and 14 obese individuals. Functional follow-up experiments were performed using siRNA mediated gene silencing in primary human myoblasts and a transgenic mouse model. Results: We observed genome-wide changes in DNA methylation and expression patterns during differentiation of primary human muscle stem cells (myoblasts). We identified epigenetic and transcriptional changes of myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6, PAX7, MEF2A, MEF2C, and MEF2D), cell cycle regulators, metabolic enzymes and genes previously not linked to myogenesis, including IL32, metallothioneins, and pregnancy-specific beta-1-glycoproteins. Functional studies demonstrated IL-32 as a novel target that regulates human myogenesis, insulin sensitivity and ATP levels in muscle cells. Furthermore, IL32 transgenic mice had reduced insulin response and muscle weight. Remarkably, approximately 3.7 times more methylation changes (147,161 versus 39,572) were observed during differentiation of myoblasts from obese versus non-obese subjects. In accordance, DNMT1 expression increased during myogenesis only in obese subjects. Interestingly, numerous genes implicated in metabolic diseases and epigenetic regulation showed differential methylation and expression during differentiation only in obese subjects. Conclusions: Our study identifies IL-32 as a novel myogenic regulator, provides a comprehensive map of the dynamic epigenome during differentiation of human muscle stem cells and reveals abnormal epigenetic changes in obesity.
  •  
2.
  • Davegårdh, Cajsa, et al. (författare)
  • Sex influences DNA methylation and gene expression in human skeletal muscle myoblasts and myotubes
  • 2019
  • Ingår i: Stem Cell Research and Therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Sex differences are known to impact muscle phenotypes, metabolism, and disease risk. Skeletal muscle stem cells (satellite cells) are important for muscle repair and to maintain functional skeletal muscle. Here we studied, for the first time, effects of sex on DNA methylation and gene expression in primary human myoblasts (activated satellite cells) before and after differentiation into myotubes. Method: We used an array-based approach to analyse genome-wide DNA methylation and gene expression in myoblasts and myotubes from 13 women and 13 men. The results were followed up with a reporter gene assay. Results: Genome-wide DNA methylation and gene expression differences between the sexes were detected in both myoblasts and myotubes, on the autosomes as well as the X-chromosome, despite lack of exposure to sex hormones and other factors that differ between sexes. Pathway analysis revealed higher expression of oxidative phosphorylation and other metabolic pathways in myoblasts from women compared to men. Oxidative phosphorylation was also enriched among genes with higher expression in myotubes from women. Forty genes in myoblasts and 9 in myotubes had differences in both DNA methylation and gene expression between the sexes, including LAMP2 and SIRT1 in myoblasts and KDM6A in myotubes. Furthermore, increased DNA methylation of LAMP2 promoter had negative effects on reporter gene expression. Five genes (CREB5, RPS4X, SYAP1, XIST, and ZRSR2) showed differential DNA methylation and gene expression between the sexes in both myoblasts and myotubes. Interestingly, differences in DNA methylation and expression between women and men were also found during differentiation (myoblasts versus myotubes), e.g., in genes involved in energy metabolism. Interestingly, more DNA methylation changes occur in women compared to men on autosomes. Conclusion: All together, we show that epigenetic and transcriptional differences exist in human myoblasts and myotubes as well as during differentiation between women and men. We believe that these intrinsic differences might contribute to sex dependent differences in muscular phenotypes.
  •  
3.
  • Varemo, Leif, et al. (författare)
  • Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes
  • 2017
  • Ingår i: Genome Medicine. - : BIOMED CENTRAL LTD. - 1756-994X .- 1756-994X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Skeletal muscle is one of the primary tissues involved in the development of type 2 diabetes (T2D). The close association between obesity and T2D makes it difficult to isolate specific effects attributed to the disease alone. Therefore, here we set out to identify and characterize intrinsic properties of myocytes, associated independently with T2D or obesity. Methods: We generated and analyzed RNA-seq data from primary differentiated myotubes from 24 human subjects, using a factorial design (healthy/T2D and non-obese/obese), to determine the influence of each specific factor on genome-wide transcription. This setup enabled us to identify intrinsic properties, originating from muscle precursor cells and retained in the corresponding myocytes. Bioinformatic and statistical methods, including differential expression analysis, gene-set analysis, and metabolic network analysis, were used to characterize the different myocytes. Results: We found that the transcriptional program associated with obesity alone was strikingly similar to that induced specifically by T2D. We identified a candidate epigenetic mechanism, H3K27me3 histone methylation, mediating these transcriptional signatures. T2D and obesity were independently associated with dysregulated myogenesis, down-regulated muscle function, and up-regulation of inflammation and extracellular matrix components. Metabolic network analysis identified that in T2D but not obesity a specific metabolite subnetwork involved in sphingolipid metabolism was transcriptionally regulated. Conclusions: Our findings identify inherent characteristics in myocytes, as a memory of the in vivo phenotype, without the influence from a diabetic or obese extracellular environment, highlighting their importance in the development of T2D.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy