SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schiavon Ricardo P.) "

Sökning: WFRF:(Schiavon Ricardo P.)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abolfathi, Bela, et al. (författare)
  • The Fourteenth Data Release of the Sloan Digital Sky Survey : First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
  • 2018
  • Ingår i: Astrophysical Journal Supplement Series. - : IOP Publishing Ltd. - 0067-0049 .- 1538-4365. ; 235:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014-2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.
  •  
2.
  • The Seventeenth Data Release of the Sloan Digital Sky Surveys : Complete Release of MaNGA, MaStar, and APOGEE-2 Data
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics (IOP). - 0067-0049 .- 1538-4365. ; 259:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys.
  •  
3.
  • Blanton, Michael R., et al. (författare)
  • Sloan Digital Sky Survey IV : Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
  • 2017
  • Ingår i: Astronomical Journal. - : IOP Publishing Ltd. - 0004-6256 .- 1538-3881. ; 154:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and. high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z similar to 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z similar to 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs. and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the. Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.
  •  
4.
  • Aguado, D. S., et al. (författare)
  • The Fifteenth Data Release of the Sloan Digital Sky Surveys : First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library
  • 2019
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 240:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July-2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA-we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020-2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data.
  •  
5.
  • Weinberg, David H., et al. (författare)
  • Chemical Cartography with APOGEE : Multi-element Abundance Ratios
  • 2019
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 874:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We map the trends of elemental abundance ratios across the Galactic disk, spanning R = 3-15 kpc and midplane distance vertical bar Z vertical bar = 0-2 kpc, for 15 elements in a sample of 20,485 stars measured by the SDSS/APOGEE survey (O, Na, Mg, Al, Si, P, S, K, Ca, V, Cr, Mn, Fe, Co, Ni). Adopting Mg rather than Fe as our reference element, and separating stars into two populations based on [Fe/Mg], we find that the median trends of [X/Mg] versus [Mg/H] in each population are nearly independent of location in the Galaxy. The full multi-element cartography can be summarized by combining these nearly universal median sequences with our measured metallicity distribution functions and the relative proportions of the low-[Fe/Mg] (high-alpha) and high-[Fe/Mg] (low-alpha) populations, which depend strongly on R and vertical bar Z vertical bar. We interpret the median sequences with a semi-empirical "two-process" model that describes both the ratio of core collapse and Type Ia supernova (SN Ia) contributions to each element and the metallicity dependence of the supernova yields. These observationally inferred trends can provide strong tests of supernova nucleosynthesis calculations. Our results lead to a relatively simple picture of abundance ratio variations in the Milky Way, in which the trends at any location can be described as the sum of two components with relative contributions that change systematically and smoothly across the Galaxy. Deviations from this picture and future extensions to other elements can provide further insights into the physics of stellar nucleosynthesis and unusual events in the Galaxy's history.
  •  
6.
  • Hasselquist, Sten, et al. (författare)
  • APOGEE Chemical Abundance Patterns of the Massive Milky Way Satellites
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 923:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey has obtained high-resolution spectra for thousands of red giant stars distributed among the massive satellite galaxies of the Milky Way (MW): the Large and Small Magellanic Clouds (LMC/SMC), the Sagittarius Dwarf Galaxy (Sgr), Fornax (Fnx), and the now fully disrupted Gaia Sausage/Enceladus (GSE) system. We present and analyze the APOGEE chemical abundance patterns of each galaxy to draw robust conclusions about their star formation histories, by quantifying the relative abundance trends of multiple elements (C, N, O, Mg, Al, Si, Ca, Fe, Ni, and Ce), as well as by fitting chemical evolution models to the [α/Fe]-[Fe/H] abundance plane for each galaxy. Results show that the chemical signatures of the starburst in the Magellanic Clouds (MCs) observed by Nidever et al. in the α-element abundances extend to C+N, Al, and Ni, with the major burst in the SMC occurring some 3-4 Gyr before the burst in the LMC. We find that Sgr and Fnx also exhibit chemical abundance patterns suggestive of secondary star formation epochs, but these events were weaker and earlier (∼5-7 Gyr ago) than those observed in the MCs. There is no chemical evidence of a second starburst in GSE, but this galaxy shows the strongest initial star formation as compared to the other four galaxies. All dwarf galaxies had greater relative contributions of AGB stars to their enrichment than the MW. Comparing and contrasting these chemical patterns highlight the importance of galaxy environment on its chemical evolution.
  •  
7.
  • Weinberg, David H., et al. (författare)
  • Chemical Cartography with APOGEE : Mapping Disk Populations with a 2-process Model and Residual Abundances
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : IOP Publishing Ltd. - 0067-0049 .- 1538-4365. ; 260:2, s. 1-46
  • Tidskriftsartikel (refereegranskat)abstract
    • We apply a novel statistical analysis to measurements of 16 elemental abundances in 34,410 Milky Way disk stars from the final data release (DR17) of APOGEE-2. Building on recent work, we fit median abundance ratio trends [X/Mg] versus [Mg/H] with a 2-process model, which decomposes abundance patterns into a "prompt" component tracing core-collapse supernovae and a "delayed" component tracing Type Ia supernovae. For each sample star, we fit the amplitudes of these two components, then compute the residuals Delta[X/H] from this two-parameter fit. The rms residuals range from similar to 0.01-0.03 dex for the most precisely measured APOGEE abundances to similar to 0.1 dex for Na, V, and Ce. The correlations of residuals reveal a complex underlying structure, including a correlated element group comprised of Ca, Na, Al, K, Cr, and Ce and a separate group comprised of Ni, V, Mn, and Co. Selecting stars poorly fit by the 2-process model reveals a rich variety of physical outliers and sometimes subtle measurement errors. Residual abundances allow for the comparison of populations controlled for differences in metallicity and [alpha/Fe]. Relative to the main disk (R = 3-13 kpc), we find nearly identical abundance patterns in the outer disk (R = 15-17 kpc), 0.05-0.2 dex depressions of multiple elements in LMC and Gaia Sausage/Enceladus stars, and wild deviations (0.4-1 dex) of multiple elements in omega Cen. The residual abundance analysis opens new opportunities for discovering chemically distinctive stars and stellar populations, for empirically constraining nucleosynthetic yields, and for testing chemical evolution models that include stochasticity in the production and redistribution of elements.
  •  
8.
  • Cunha, Katia, et al. (författare)
  • Adding the s-Process Element Cerium to the APOGEE Survey : Identification and Characterization of Ce II Lines in the H-band Spectral Window
  • 2017
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 844:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Nine Ce II lines have been identified and characterized within the spectral window observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey (between lambda 1.51 and 1.69 mu m). At solar metallicities, cerium is an element that is produced predominantly as a result of the slow capture of neutrons (the s-process) during asymptotic giant branch stellar evolution. The Ce II lines were identified using a combination of a high-resolution (R = lambda/delta lambda = 100,000) Fourier Transform Spectrometer (FTS) spectrum of a Boo and an APOGEE spectrum (R. =. 22,400) of a metal-poor, but s-process enriched, red giant (2M16011638-1201525). Laboratory oscillator strengths are not available for these lines. Astrophysical gf-values were derived using alpha Boo as a standard star, with the absolute cerium abundance in alpha Boo set by using optical Ce II lines that have precise published laboratory gf-values. The near-infrared Ce II lines identified here are also analyzed, as consistency checks, in a small number of bright red giants using archival FTS spectra, as well as a small sample of APOGEE red giants, including two members of the open cluster NGC 6819, two field stars, and seven metal-poor N-and Al-rich stars. The conclusion is that this set of Ce II lines can be detected and analyzed in a large fraction of the APOGEE red giant sample and will be useful for probing chemical evolution of the s-process products in various populations of the Milky Way.
  •  
9.
  • Fernandes, Laura, et al. (författare)
  • A comparative analysis of the chemical compositions of Gaia-Enceladus/Sausage and Milky Way satellites using APOGEE
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 519:3, s. 3611-3622
  • Tidskriftsartikel (refereegranskat)abstract
    • We use data from the 17th data release of the Apache Point Observatory Galactic Evolution Experiment (APOGEE 2) to contrast the chemical composition of the recently discovered Gaia Enceladus/Sausage system (GE/S) to those of 10 Milky Way (MW) dwarf satellite galaxies: LMC, SMC, Boötes I, Carina, Draco, Fornax, Sagittarius, Sculptor, Sextans, and Ursa Minor. Our main focus is on the distributions of the stellar populations of those systems in the [Mg/Fe]–[Fe/H] and [Mg/Mn]–[Al/Fe] planes, which are commonly employed in the literature for chemical diagnosis and where dwarf galaxies can be distinguished from in situ populations. We show that, unlike MW satellites, a GE/S sample defined purely on the basis of orbital parameters falls almost entirely within the locus of ‘accreted’ stellar populations in chemical space, which is likely caused by an early quenching of star formation in GE/S. Due to a more protracted history of star formation, stars in the metal-rich end of the MW satellite populations are characterized by lower [Mg/Mn] than those of their GE/S counterparts. The chemical compositions of GE/S stars are consistent with a higher early star formation rate (SFR) than MW satellites of comparable and even higher mass, suggesting that star formation in the early universe was strongly influenced by other parameters in addition to mass. We find that the direction of the metallicity gradient in the [Mg/Mn]–[Al/Fe] plane of dwarf galaxies is an indicator of the early SFR of the system. 
  •  
10.
  • Horta, Danny, et al. (författare)
  • The chemical characterization of halo substructure in the Milky Way based on APOGEE
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 520:4, s. 5671-5711
  • Tidskriftsartikel (refereegranskat)abstract
    • Galactic haloes in a Λ-CDM universe are predicted to host today a swarm of debris resulting from cannibalized dwarf galaxies. The chemodynamical information recorded in their stellar populations helps elucidate their nature, constraining the assembly history of the Galaxy. Using data from APOGEE and Gaia, we examine the chemical properties of various halo substructures, considering elements that sample various nucleosynthetic pathways. The systems studied are Heracles, Gaia-Enceladus/Sausage (GES), the Helmi stream, Sequoia, Thamnos, Aleph, LMS-1, Arjuna, I’itoi, Nyx, Icarus, and Pontus. Abundance patterns of all substructures are cross-compared in a statistically robust fashion. Our main findings include: (i) the chemical properties of most substructures studied match qualitatively those of dwarf Milky Way satellites, such as the Sagittarius dSph. Exceptions are Nyx and Aleph, which are chemically similar to disc stars, implying that these substructures were likely formed in situ; (ii) Heracles differs chemically from in situ populations such as Aurora and its inner halo counterparts in a statistically significant way. The differences suggest that the star formation rate was lower in Heracles than in the early Milky Way; (iii) the chemistry of Arjuna, LMS-1, and I’itoi is indistinguishable from that of GES, suggesting a possible common origin; (iv) all three Sequoia samples studied are qualitatively similar. However, only two of those samples present chemistry that is consistent with GES in a statistically significant fashion; (v) the abundance patterns of the Helmi stream and Thamnos are different from all other halo substructures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy