SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schoeneberg S.) ;pers:(Kappes A.)"

Sökning: WFRF:(Schoeneberg S.) > Kappes A.

  • Resultat 1-10 av 78
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:2
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  •  
3.
  • Aartsen, M. G., et al. (författare)
  • Multiwavelength follow-up of a rare IceCube neutrino multiplet
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 607
  • Tidskriftsartikel (refereegranskat)abstract
    • On February 17, 2016, the IceCube real-time neutrino search identified, for the first time, three muon neutrino candidates arriving within 100 s of one another, consistent with coming from the same point in the sky. Such a triplet is expected once every 13.7 years as a random coincidence of background events. However, considering the lifetime of the follow-up program the probability of detecting at least one triplet from atmospheric background is 32%. Follow-up observatories were notified in order to search for an electromagnetic counterpart. Observations were obtained by Swift's X-ray telescope, by ASAS-SN, LCO and MASTER at optical wavelengths, and by VERITAS in the very-high-energy gamma-ray regime. Moreover, the Swift BAT serendipitously observed the location 100 s after the first neutrino was detected, and data from the Fermi LAT and HAWC observatory were analyzed. We present details of the neutrino triplet and the follow-up observations. No likely electromagnetic counterpart was detected, and we discuss the implications of these constraints on candidate neutrino sources such as gamma-ray bursts, core-collapse supernovae and active galactic nucleus flares. This study illustrates the potential of and challenges for future follow-up campaigns.
  •  
4.
  • Adrian-Martinez, S., et al. (författare)
  • The First Combined Search For Neutrino Point-Sources In The Southern Hemisphere With The Antares And Icecube Neutrino Telescopes
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 823:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors, which differ in size and location, forms a window in the southern sky where the sensitivity to point sources improves by up to a factor of 2 compared with individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the southern sky and from a preselected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for E-2.5 and E-2 power-law spectra with different energy cut-offs.
  •  
5.
  • Aartsen, M. G., et al. (författare)
  • PINGU : a vision for neutrino and particle physics at the South Pole
  • 2017
  • Ingår i: Journal of Physics G. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 44:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Precision IceCube Next Generation Upgrade (PINGU) is a proposed low-energy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6 Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60 000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters theta(23) and Delta m(32)(2), including the octant of theta(23) for a wide range of values, and determine the neutrino mass ordering at 3 sigma median significance within five years of operation. PINGU's high precision measurement of the rate of nu(T) appearance will provide essential tests of the unitarity of the 3 x 3 PMNS neutrino mixing matrix. PINGU will also improve the sensitivity of searches for low mass dark matter in the Sun, use neutrino tomography to directly probe the composition of the Earth's core, and improve IceCube's sensitivity to neutrinos from Galactic supernovae. Reoptimization of the PINGU design has permitted substantial reduction in both cost and logistical requirements while delivering performance nearly identical to configurations previously studied.
  •  
6.
  • Aartsen, M. G., et al. (författare)
  • The IceCube Neutrino Observatory : instrumentation and online systems
  • 2017
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221 .- 1748-0221. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.
  •  
7.
  • Abbasi, R., et al. (författare)
  • IceTop : The surface component of IceCube
  • 2013
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 700, s. 188-220
  • Tidskriftsartikel (refereegranskat)abstract
    • IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array with an area of 1 km(2). The detector allows a detailed exploration of the mass composition of primary cosmic rays in the energy range from about 100 TeV to 1 EeV by exploiting the correlation between the shower energy measured in IceTop and the energy deposited by muons in the deep ice. In this paper we report on the technical design, construction and installation, the trigger and data acquisition systems as well as the software framework for calibration, reconstruction and simulation. Finally the first experience from commissioning and operating the detector and the performance as an air shower detector will be discussed.
  •  
8.
  • Aartsen, M. G., et al. (författare)
  • All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data
  • 2017
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 835:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the recent detection of an astrophysical flux of high-energy neutrinos, the question of its origin has not yet fully been answered. Much of what is known about this flux comes from a small event sample of high neutrino purity, good energy resolution, but large angular uncertainties. In searches for point-like sources, on the other hand, the best performance is given by using large statistics and good angular reconstructions. Track-like muon events produced in neutrino interactions satisfy these requirements. We present here the results of searches for point-like sources with neutrinos using data acquired by the IceCube detector over 7 yr from 2008 to 2015. The discovery potential of the analysis in the northern sky is now significantly below E(nu)(2)d phi/dE(nu) = 10(-12) TeV cm(-2) s(-1), on average 38% lower than the sensitivity of the previously published analysis of 4 yr exposure. No significant clustering of neutrinos above background expectation was observed, and implications for prominent neutrino source candidates are discussed.
  •  
9.
  • Aartsen, M. G., et al. (författare)
  • Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data
  • 2018
  • Ingår i: Physical Review D. - : AMER PHYSICAL SOC. - 2470-0010 .- 2470-0029. ; 98:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a quasidifferential upper limit on the extremely-high-energy (EHE) neutrino flux above 5 x 10(6) GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above 10(6) GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between 5 x 10(6) and 2 x 10(10) GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of E-nu(2)phi(nu e+nu mu+nu tau) similar or equal to 2 x 10(-8) GeV/cm(2) sec sr at 10(9) GeV. A significant part of the parameter space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is disfavored independently of uncertain models of the extragalactic background light which previous IceCube constraints partially relied on.
  •  
10.
  • Aartsen, M. G., et al. (författare)
  • Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data
  • 2017
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 843:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an all-sky search for muon neutrinos produced during the prompt γ-ray emission of 1172 gamma-ray bursts (GRBs) with the IceCube Neutrino Observatory. The detection of these neutrinos would constitute evidence for ultra-high-energy cosmic-ray (UHECR) production in GRBs, as interactions between accelerated protons and the prompt γ-ray field would yield charged pions, which decay to neutrinos. A previously reported search for muon neutrino tracks from northern hemisphere GRBs has been extended to include three additional years of IceCube data. A search for such tracks from southern hemisphere GRBs in five years of IceCube data has been introduced to enhance our sensitivity to the highest energy neutrinos. No significant correlation between neutrino events and observed GRBs is seen in the new data. Combining this result with previous muon neutrino track searches and a search for cascade signature events from all neutrino flavors, we obtain new constraints for single-zone fireball models of GRB neutrino and UHECR production.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 78

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy