SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schuetz C) "

Sökning: WFRF:(Schuetz C)

  • Resultat 1-10 av 24
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schael, S., et al. (författare)
  • Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP
  • 2013
  • Ingår i: Physics Reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 532:4, s. 119-244
  • Forskningsöversikt (refereegranskat)abstract
    • Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma - 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Nelson, G., et al. (författare)
  • QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy
  • 2021
  • Ingår i: Journal of Microscopy. - 0022-2720. ; 284:1, s. 56-73
  • Tidskriftsartikel (refereegranskat)abstract
    • A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.
  •  
7.
  • Ferrua, Francesca, et al. (författare)
  • Hematopoietic stem cell transplantation for CD40 ligand deficiency: results from an EBMT/ESID-IEWP-SCETIDE-PIDTC Study.
  • 2019
  • Ingår i: The Journal of allergy and clinical immunology. - 1097-6825. ; 143:6, s. 2238-2253
  • Tidskriftsartikel (refereegranskat)abstract
    • CD40 ligand (CD40L) deficiency, an X-linked primary immunodeficiency, causes recurrent sinopulmonary, Pneumocystis and Cryptosporidium infections. Long-term survival with supportive therapy is poor. Currently, the only curative treatment is hematopoietic stem cell transplantation (HSCT).We performed an international collaborative study to improve patients' management, aiming to individualize risk factors and determine optimal HSCT characteristics.We retrospectively collected data on 130 patients who underwent HSCT for CD40L deficiency between 1993-2015. We analyzed outcome and variables relevance with respect to survival and cure.Overall survival (OS), event-free survival (EFS) and disease-free survival (DFS) were 78.2%, 58.1% and 72.3% 5 years post-HSCT. Results were better in transplants performed ≥2000 and in children <10 years old at HSCT. Pre-existing organ damage negatively influenced outcome. Sclerosing cholangitis was the most important risk factor. After 2000, superior OS was achieved with matched donors. Use of myeloablative regimens and HSCT ≤2 years from diagnosis associated with higher OS and DFS. EFS was best with matched sibling donors, myeloablative conditioning (MAC) and bone marrow-derived stem cells. Most rejections occurred after reduced intensity or non-myeloablative conditioning, which associated with poor donor cell engraftment. Mortality occurred mainly early after HSCT, predominantly from infections. Among survivors who ceased immunoglobulin replacement, T-lymphocyte chimerism was ≥50% donor in 85.2%.HSCT is curative in CD40L deficiency, with improved outcome if performed before organ damage development. MAC is associated with better OS, EFS and DFS. Prospective studies are required to compare risks of HSCT with those of life-long supportive therapy.
  •  
8.
  • Hiesmayr, M., et al. (författare)
  • Decreased food intake is a risk factor for mortality in hospitalised patients : the NutritionDay survey 2006
  • 2009
  • Ingår i: Clinical Nutrition. - 0261-5614 .- 1532-1983. ; 28:5, s. 484-491
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND & AIMS: Malnutrition is a known risk factor for the development of complications in hospitalised patients. We determined whether eating only fractions of the meals served is an independent risk factor for mortality. METHODS: The NutritionDay is a multinational one-day cross-sectional survey of nutritional factors and food intake in 16,290 adult hospitalised patients on January 19th 2006. The effect of food intake and nutritional factors on death in hospital within 30 days was assessed in a competing risk analysis. RESULTS: More than half of the patients did not eat their full meal provided by the hospital. Decreased food intake on NutritionDay or during the previous week was associated with an increased risk of dying, even after adjustment for various patient and disease related factors. Adjusted hazard ratio for dying when eating about a quarter of the meal on NutritionDay was 2.10 (1.53-2.89); when eating nothing 3.02 (2.11-4.32). More than half of the patients who ate less than a quarter of their meal did not receive artificial nutrition support. Only 25% patients eating nothing at lunch receive artificial nutrition support. CONCLUSION: Many hospitalised patients in European hospitals eat less food than provided as regular meal. This decreased food intake represents an independent risk factor for hospital mortality.
  •  
9.
  • Faatz, B., et al. (författare)
  • Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator
  • 2016
  • Ingår i: New Journal of Physics. - 1367-2630 .- 1367-2630. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs-dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24
  • [1]23Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy