SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schuller J) ;hsvcat:3"

Sökning: WFRF:(Schuller J) > Medicin och hälsovetenskap

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Keck, Michaela Kristina, et al. (författare)
  • Amplification of the PLAG-family genes—PLAGL1 and PLAGL2—is a key feature of the novel tumor type CNS embryonal tumor with PLAGL amplification
  • 2023
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 145:1, s. 49-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Pediatric central nervous system (CNS) tumors represent the most common cause of cancer-related death in children aged 0–14 years. They differ from their adult counterparts, showing extensive clinical and molecular heterogeneity as well as a challenging histopathological spectrum that often impairs accurate diagnosis. Here, we use DNA methylation-based CNS tumor classification in combination with copy number, RNA-seq, and ChIP-seq analysis to characterize a newly identified CNS tumor type. In addition, we report histology, patient characteristics, and survival data in this tumor type. We describe a biologically distinct pediatric CNS tumor type (n = 31 cases) that is characterized by focal high-level amplification and resultant overexpression of either PLAGL1 or PLAGL2, and an absence of recurrent genetic alterations characteristic of other pediatric CNS tumor types. Both genes act as transcription factors for a regulatory subset of imprinted genes (IGs), components of the Wnt/β-Catenin pathway, and the potential drug targets RET and CYP2W1, which are also specifically overexpressed in this tumor type. A derived PLAGL-specific gene expression signature indicates dysregulation of imprinting control and differentiation/development. These tumors occurred throughout the neuroaxis including the cerebral hemispheres, cerebellum, and brainstem, and were predominantly composed of primitive embryonal-like cells lacking robust expression of markers of glial or neuronal differentiation (e.g., GFAP, OLIG2, and synaptophysin). Tumors with PLAGL1 amplification were typically diagnosed during adolescence (median age 10.5 years), whereas those with PLAGL2 amplification were diagnosed during early childhood (median age 2 years). The 10-year overall survival was 66% for PLAGL1-amplified tumors, 25% for PLAGL2-amplified tumors, 18% for male patients, and 82% for female patients. In summary, we describe a new type of biologically distinct CNS tumor characterized by PLAGL1/2 amplification that occurs predominantly in infants and toddlers (PLAGL2) or adolescents (PLAGL1) which we consider best classified as a CNS embryonal tumor and which is associated with intermediate survival. The cell of origin and optimal treatment strategies remain to be defined.
  •  
4.
  • Bolin, Sara, 1988-, et al. (författare)
  • Dormant SOX9-positive cells behind MYC-driven medulloblastoma recurrence
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor recurrence is a slow biological process involving therapy resistance, immune escape, and metastasis and is the leading cause of death in medulloblastoma, the most frequent malignant pediatric brain tumor. By studying paired primary-recurrent patient samples and patient-derived xenografts we identified a significant accumulation of SOX9-positive cells in relapses and metastases. They exist as rare, quiescent cells in Group 3 and Group 4 patients that constitute two-thirds of medulloblastoma. To follow relapse at the single-cell level we developed an inducible dual Tet model of MYC-driven MB, where MYC can be directed from treatment-sensitive bulk cells to resistant, dormant SOX9-positive cells by doxycycline. SOX9 promoted immune es-cape, DNA repair suppression and was essential for recurrence. Tumor cell dormancy was non-hierarchical, migratory, and depended on MYC suppression by SOX9 to promote relapse. By using computational modeling and treatment we further showed how doxorubicin and MGMT inhibitors are specifically targeting relapsing cells.
  •  
5.
  • Candinas, R, et al. (författare)
  • Impact of fusion avoidance on performance of the automatic threshold tracking feature in dual chamber pacemakers: A multicenter prospective randomized study
  • 2002
  • Ingår i: PACE. - : Wiley. - 1540-8159. ; 25:11, s. 1540-1545
  • Tidskriftsartikel (refereegranskat)abstract
    • The Autocapture algorithm enables automatic capture verification on a beat-by-beat basis by recognizing the evoked response signal following each pacemaker stimulus. The algorithm intends to increase patient safety while decreasing energy consumption. However, the occurrence of fusion beats, particularly during dual chamber pacing, may limit the energy saving effect of Autocapture. The aim of this multicenter, prospective, randomized study was to evaluate the impact of the Fusion Avoidance (FA) algorithm on the incidence of fusion beats. Thirty-eight patients (mean age 69 +/- 13 years) with intrinsic AV conduction who were implanted with an Affinity DR were studied. After programming a PV/AV delay of 120/190 ms, patients were randomized to FA On or Off. Each group was further randomized with respect to activation of the AutoIntrinsic Conduction Search (AICS) algorithm. The total number of beats, ventricular paced beats, fusion beats, backup pulses, and threshold searches were analyzed from 24-hour Holter recordings. The number of total beats was comparable in both FA groups. The number of total ventricular paced beats, fusion beats, backup pulses, and threshold searches were significantly reduced in the FA On group (% reduction: 68% P < 0.001, 75% P < 0.01, 95% P < 0.01, and 94% P < 0.05, respectively). The number of ventricular paced beats with full capture was significantly reduced when AICS was activated (P < 0.05). In conclusion, the FA algorithm substantially reduces the amount of ventricular paced beats, fusion beats, unnecessary backup pulses and threshold searches, and therefore, provides added benefits in energy saving obtained by Autocapture.
  •  
6.
  • Cox, E., et al. (författare)
  • The Intriguing Interaction of Escherichia coli with the Host Environment and Innovative Strategies To Interfere with Colonization: a Summary of the 2019 E. coli and the Mucosal Immune System Meeting
  • 2020
  • Ingår i: Applied and environmental microbiology. - : American Society for Microbiology. - 0099-2240 .- 1098-5336. ; 86:24
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The third E. coli and the Mucosal Immune System (ECMIS) meeting was held at Ghent University in Belgium from 2 to 5 June 2019. It brought together an international group of scientists interested in mechanisms of colonization, host response, and vaccine development. ECMIS distinguishes itself from related meetings on these enteropathogens by providing a greater emphasis on animal health and disease and covering a broad range of pathotypes, including enterohemorrhagic, enteropathogenic, enterotoxigenic, enteroaggregative, and extraintestinal pathogenic Escherichia coli. As it is well established that the genus Shigella represents a subspecies of E. coli, these organisms along with related enteroinvasive E. coli are also included. In addition, Tannerella forsythia, a periodontal pathogen, was presented as an example of a pathogen which uses its surface glycans for mucosal interaction. This review summarizes several highlights from the 2019 meeting and major advances to our understanding of the biology of these pathogens and their impact on the host.
  •  
7.
  • Hellwig, Malte, et al. (författare)
  • TCF4 (E2-2) harbors tumor suppressive functions in SHH medulloblastoma
  • 2019
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 137:4, s. 657-673
  • Tidskriftsartikel (refereegranskat)abstract
    • The TCF4 gene encodes for the basic helix–loop–helix transcription factor 4 (TCF4), which plays an important role in the development of the central nervous system (CNS). Haploinsufficiency of TCF4 was found to cause Pitt-Hopkins syndrome (PTHS), a severe neurodevelopmental disorder. Recently, the screening of a large cohort of medulloblastoma (MB), a highly aggressive embryonal brain tumor, revealed almost 20% of adult patients with MB of the Sonic hedgehog (SHH) subtype carrying somatic TCF4 mutations. Interestingly, many of these mutations have previously been detected as germline mutations in patients with PTHS. We show here that overexpression of wild-type TCF4 in vitro significantly suppresses cell proliferation in MB cells, whereas mutant TCF4 proteins do not to the same extent. Furthermore, RNA sequencing revealed significant upregulation of multiple well-known tumor suppressors upon expression of wild-type TCF4. In vivo, a prenatal knockout of Tcf4 in mice caused a significant increase in apoptosis accompanied by a decreased proliferation and failed migration of cerebellar granule neuron precursor cells (CGNP), which are thought to be the cells of origin for SHH MB. In contrast, postnatal in vitro and in vivo knockouts of Tcf4 with and without an additional constitutive activation of the SHH pathway led to significantly increased proliferation of CGNP or MB cells. Finally, publicly available data from human MB show that relatively low expression levels of TCF4 significantly correlate with a worse clinical outcome. These results not only point to time-specific roles of Tcf4 during cerebellar development but also suggest a functional linkage between TCF4 mutations and the formation of SHH MB, proposing that TCF4 acts as a tumor suppressor during postnatal stages of cerebellar development.
  •  
8.
  • Pasche, Boris, et al. (författare)
  • Somatic acquisition and signaling of TGFBR1*6A in cancer
  • 2005
  • Ingår i: Journal of the American Medical Association (JAMA). - : American Medical Association (AMA). - 0098-7484 .- 1538-3598. ; 294:13, s. 1634-1646
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: TGFBR1*6A is a common polymorphism of the type I transforming growth factor 0 receptor (TGFBR1). Epidemiological studies suggest that TGFBR1*6A may act as a tumor susceptibility allele. How TGFBR1*6A contributes to cancer development is largely unknown.. Objectives: To determine whether TGFBR1*6A is somatically acquired by primary tumors and metastases during cancer development and whether the 3-amino acid deletion that differentiates TGFBR1*6A from TGFBR1 is part of the mature receptor or part of the signal sequence and to investigate TGFBR1*6A signaling in cancer cells. Design, Setting, and Patients: Tumor And germline tissues from 531 patients with a diagnosis of head and neck, colorectal, or breast cancer recruited from 3 centers in the United States and from 1 center in Spain from June 1, 1994, through June 30, 2004, In vitro translation assays, MCF-7 breast cancer cells stably transfected with TGFBR1*6A, TGFBR1, or the vector alone, DLD-1 colorectal cancer cells that endogenously carry TGFBR1*6A, and SW48 colorectal cancer cells that do not carry TGFBR1*6A. Main Outcome Measures: TGFBR1*6A somatic acquisition in cancer. Determination of the amino terminus of the mature TGFBR1*6A and TGFBR1 receptors. Determination of TGF-beta-dependent cell proliferation. Results: TGFBR1*6A was somatically acquired in 13 of 44 (29.5%) colorectal cancer metastases, in 4 of 157 (2.5%) of colorectal tumors, in 4 of 226 (1.8%) head and neck primary tumors, and in none of the 104 patients with breast cancer. TGFBR1*6A somatic acquisition is not associated with loss of heterozygosity, microsatellite instability, or a mutator phenotype. The signal sequences of TGFBR1 and TGFBR1*6A are cleaved at the same site resulting in identical mature receptors. TGFBR1*6A may switch TGF-beta growth inhibitory signals into growth stimulatory signals in MCF-7 breast cancer cells and in DLD-1 colorectal cancer cells. Conclusions: TGFBR1*6A is somatically acquired in 29.5% of liver metastases from colorectal cancer and may bestow cancer cells with a growth advantage in the presence of TGF-beta. The functional consequences of this conversion appear to be mediated by the TGFBR1*6A signal sequence rather than by the mature receptor. The results highlight a new facet of TGF-beta signaling in cancer and suggest that TGFBR1*6A may represent a potential therapeutic target in cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy