SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schuller J) ;lar1:(cth)"

Search: WFRF:(Schuller J) > Chalmers University of Technology

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Malbet, F., et al. (author)
  • High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT)
  • 2012
  • In: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 34:2, s. 385-413
  • Journal article (peer-reviewed)abstract
    • A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood (d a parts per thousand currency signaEuro parts per thousand 15 pc) with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT-the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements at the 0.05 mu as (1 sigma) accuracy level, sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis parabola single-mirror telescope (D = 1 m), a detector with a large field of view located 40 m away from the telescope and made of 8 small movable CCDs located around a fixed central CCD, and an interferometric calibration system monitoring dynamical Young's fringes originating from metrology fibers located at the primary mirror. The mission profile is driven by the fact that the two main modules of the payload, the telescope and the focal plane, must be located 40 m away leading to the choice of a formation flying option as the reference mission, and of a deployable boom option as an alternative choice. The proposed mission architecture relies on the use of two satellites, of about 700 kg each, operating at L2 for 5 years, flying in formation and offering a capability of more than 20,000 reconfigurations. The two satellites will be launched in a stacked configuration using a Soyuz ST launch vehicle. The NEAT primary science program will encompass an astrometric survey of our 200 closest F-, G- and K-type stellar neighbors, with an average of 50 visits each distributed over the nominal mission duration. The main survey operation will use approximately 70% of the mission lifetime. The remaining 30% of NEAT observing time might be allocated, for example, to improve the characterization of the architecture of selected planetary systems around nearby targets of specific interest (low-mass stars, young stars, etc.) discovered by Gaia, ground-based high-precision radial-velocity surveys, and other programs. With its exquisite, surgical astrometric precision, NEAT holds the promise to provide the first thorough census for Earth-mass planets around stars in the immediate vicinity of our Sun.
  •  
2.
  • Urquhart, J. S., et al. (author)
  • SEDIGISM-ATLASGAL: Dense gas fraction and star formation efficiency across the Galactic disc
  • 2021
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 3050-3063
  • Journal article (peer-reviewed)abstract
    • By combining two surveys covering a large fraction of the molecular material in the Galactic disc, we investigate the role spiral arms play in the star formation process. We have matched clumps identified by APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) with their parental giant molecular clouds (GMCs) as identified by SEDIGISM, and use these GMC masses, the bolometric luminosities, and integrated clump masses obtained in a concurrent paper to estimate the dense gas fractions (DGFgmc = ΣMclump/Mgmc) and the instantaneous star formation efficiencies (i.e. SFEgmc = ΣLclump/Mgmc). We find that the molecular material associated with ATLASGAL clumps is concentrated in the spiral arms (∼60 per cent found within ±10 km s-1 of an arm).We have searched for variations in the values of these physical parameters with respect to their proximity to the spiral arms, but find no evidence for any enhancement that might be attributable to the spiral arms. The combined results from a number of similar studies based on different surveys indicate that, while spiral-arm location plays a role in cloud formation and HI to H2 conversion, the subsequent star formation processes appear to depend more on local environment effects. This leads us to conclude that the enhanced star formation activity seen towards the spiral arms is the result of source crowding rather than the consequence of any physical process.
  •  
3.
  • Duarte-Cabral, A., et al. (author)
  • The SEDIGISM survey: Molecular clouds in the inner Galaxy
  • 2021
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 3027-3049
  • Research review (peer-reviewed)abstract
    • We use the 13CO(2-1) emission from the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic InterStellar Medium) high-resolution spectral-line survey of the inner Galaxy, to extract the molecular cloud population with a large dynamic range in spatial scales, using the Spectral Clustering for Interstellar Molecular Emission Segmentation (SCIMES) algorithm. This work compiles a cloud catalogue with a total of 10 663 molecular clouds, 10 300 of which we were able to assign distances and compute physical properties. We study some of the global properties of clouds using a science sample, consisting of 6664 well-resolved sources and for which the distance estimates are reliable. In particular, we compare the scaling relations retrieved from SEDIGISM to those of other surveys, and we explore the properties of clouds with and without high-mass star formation. Our results suggest that there is no single global property of a cloud that determines its ability to form massive stars, although we find combined trends of increasing mass, size, surface density, and velocity dispersion for the sub-sample of clouds with ongoing high-mass star formation. We then isolate the most extreme clouds in the SEDIGISM sample (i.e. clouds in the tails of the distributions) to look at their overall Galactic distribution, in search for hints of environmental effects. We find that, for most properties, the Galactic distribution of the most extreme clouds is only marginally different to that of the global cloud population. The Galactic distribution of the largest clouds, the turbulent clouds and the high-mass star-forming clouds are those that deviate most significantly from the global cloud population. We also find that the least dynamically active clouds (with low velocity dispersion or low virial parameter) are situated further afield, mostly in the least populated areas. However, we suspect that part of these trends may be affected by some observational biases (such as completeness and survey limitations), and thus require further follow up work in order to be confirmed.
  •  
4.
  • Mattern, M., et al. (author)
  • SEDIGISM: the kinematics of ATLASGAL filaments
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 619
  • Journal article (peer-reviewed)abstract
    • Analyzing the kinematics of filamentary molecular clouds is a crucial step toward understanding their role in the star formation process. Therefore, we study the kinematics of 283 filament candidates in the inner Galaxy, that were previously identified in the ATLASGAL dust continuum data. The (CO)-C-13(2 - 1) and (CO)-O-18(2 - 1) data of the SEDIGISM survey (Structure, Excitation, and Dynamics of the Inner Galactic Inter Stellar Medium) allows us to analyze the kinematics of these targets and to determine their physical properties at a resolution of 30 '' and 0.25 km s(-1). To do so, we developed an automated algorithm to identify all velocity components along the line-of-sight correlated with the ATLASGAL dust emission, and derive size, mass, and kinematic properties for all velocity components. We find two-third of the filament candidates are coherent structures in position-position-velocity space. The remaining candidates appear to be the result of a superposition of two or three filamentary structures along the line-of- sight. At the resolution of the data, on average the filaments are in agreement with Plummer-like radial density profiles with a power-law exponent of p approximate to 1.5 +/- 0.5, indicating that they are typically embedded in a molecular cloud and do not have a well-defined outer radius. Also, we find a correlation between the observed mass per unit length and the velocity dispersion of the filament of m proportional to o(v)(2). We show that this relation can be explained by a virial balance between self-gravity and pressure. Another possible explanation could be radial collapse of the filament, where we can exclude infall motions close to the free-fall velocity.
  •  
5.
  • Schuller, F., et al. (author)
  • The SEDIGISM survey: First Data Release and overview of the Galactic structure
  • 2021
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 3064-3082
  • Journal article (peer-reviewed)abstract
    • The SEDIGISM (Structure, Excitation and Dynamics of the Inner Galactic InterstellarMedium) survey used the APEX telescope to map 84 deg(2) of the Galactic plane between l = -60 degrees and +31 degrees in several molecular transitions, including (CO)-C-13(2 - 1) and (CO)-O-18(2 - 1), thus probing the moderately dense (similar to 10(3) cm(-3)) component of the interstellar medium. With an angular resolution of 30 arcsec and a typical 1 sigma sensitivity of 0.8-1.0K at 0.25 km s(-1) velocity resolution, it gives access to a wide range of structures, from individual star-forming clumps to giant molecular clouds and complexes. The coverage includes a good fraction of the first and fourth Galactic quadrants, allowing us to constrain the large-scale distribution of cold molecular gas in the inner Galaxy. In this paper, we provide an updated overview of the full survey and the data reduction procedures used. We also assess the quality of these data and describe the data products that are being made publicly available as part of this First Data Release (DR1). We present integrated maps and position-velocity maps of the molecular gas and use these to investigate the correlation between the molecular gas and the large-scale structural features of the Milky Way such as the spiral arms, Galactic bar and Galactic Centre. We find that approximately 60 per cent of the molecular gas is associated with the spiral arms and these appear as strong intensity peaks in the derived Galactocentric distribution. We also find strong peaks in intensity at specific longitudes that correspond to the Galactic Centre and well-known star-forming complexes, revealing that the 13CO emission is concentrated in a small number of complexes rather than evenly distributed along spiral arms.
  •  
6.
  • Merkl, Philipp, et al. (author)
  • Ultrafast transition between exciton phases in van der Waals heterostructures
  • 2019
  • In: Nature Materials. - : Springer Science and Business Media LLC. - 1476-4660 .- 1476-1122. ; 18:7, s. 691-696
  • Journal article (other academic/artistic)abstract
    • © 2019, The Author(s), under exclusive licence to Springer Nature Limited. Heterostructures of atomically thin van der Waals bonded monolayers have opened a unique platform to engineer Coulomb correlations, shaping excitonic1–3, Mott insulating4 or superconducting phases5,6. In transition metal dichalcogenide heterostructures7, electrons and holes residing in different monolayers can bind into spatially indirect excitons1,3,8–11 with a strong potential for optoelectronics11,12, valleytronics1,3,13, Bose condensation14, superfluidity14,15 and moiré-induced nanodot lattices16. Yet these ideas require a microscopic understanding of the formation, dissociation and thermalization dynamics of correlations including ultrafast phase transitions. Here we introduce a direct ultrafast access to Coulomb correlations between monolayers, where phase-locked mid-infrared pulses allow us to measure the binding energy of interlayer excitons in WSe2/WS2 hetero-bilayers by revealing a novel 1s–2p resonance, explained by a fully quantum mechanical model. Furthermore, we trace, with subcycle time resolution, the transformation of an exciton gas photogenerated in the WSe2 layer directly into interlayer excitons. Depending on the stacking angle, intra- and interlayer species coexist on picosecond scales and the 1s–2p resonance becomes renormalized. Our work provides a direct measurement of the binding energy of interlayer excitons and opens the possibility to trace and control correlations in novel artificial materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view