SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schurmann Claudia) "

Sökning: WFRF:(Schurmann Claudia)

  • Resultat 1-10 av 27
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Koettgen, Anna, et al. (författare)
  • Genome-wide association analyses identify 18 new loci associated with serum urate concentrations
  • 2013
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 45:2, s. 145-154
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from &gt;140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SEMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional excretion of urate. Network analyses implicate the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. New candidate genes for serum urate concentration highlight the importance of metabolic control of urate production and excretion, which may have implications for the treatment and prevention of gout.</p>
  •  
2.
  • Wessel, Jennifer, et al. (författare)
  • Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility
  • 2015
  • Ingår i: Nature communications. - 2041-1723. ; 6, s. 5897
  • Tidskriftsartikel (refereegranskat)abstract
    • Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=-0.09±0.01 mmol l(-1), P=3.4 × 10(-12)), T2D risk (OR[95%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (β=-0.07±0.035 pmolinsulin mmolglucose(-1), P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l(-1), P=4.3 × 10(-4)). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l(-1), P=1.3 × 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.
3.
  • Christophersen, Ingrid E., et al. (författare)
  • Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation
  • 2017
  • Ingår i: Nature Genetics. - NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 49:6, s. 946-
  • Tidskriftsartikel (refereegranskat)abstract
    • Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death(1,2). Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups(3-7). To further define the genetic basis of atrial fibrillation, we performed large-scale, trans-ancestry meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 17,931 individuals with atrial fibrillation and 115,142 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,346 cases and 132,086 referents. We identified 12 new genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate the identification of new potential targets for drug discovery(8).
  •  
4.
  • Huffman, Jennifer E., et al. (författare)
  • Modulation of Genetic Associations with Serum Urate Levels by Body-Mass-Index in Humans
  • 2015
  • Ingår i: PLoS ONE. - 1932-6203 .- 1932-6203. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We tested for interactions between body mass index (BMI) and common genetic variants affecting serum urate levels, genome-wide, in up to 42569 participants. Both stratified genome-wide association (GWAS) analyses, in lean, overweight and obese individuals, and regression-type analyses in a non BMI-stratified overall sample were performed. The former did not uncover any novel locus with a major main effect, but supported modulation of effects for some known and potentially new urate loci. The latter highlighted a SNP at RBFOX3 reaching genome-wide significant level (effect size 0.014, 95% CI 0.008-0.02, P-inter= 2.6 x 10(-8)). Two top loci in interaction term analyses, RBFOX3 and ERO1LB-EDAR-ADD, also displayed suggestive differences in main effect size between the lean and obese strata. All top ranking loci for urate effect differences between BMI categories were novel and most had small magnitude but opposite direction effects between strata. They include the locus RBMS1-TANK (men, Pdifflean-overweight= 4.7 x 10(-8)), a region that has been associated with several obesity related traits, and TSPYL5 (men, Pdifflean-overweight= 9.1 x 10(-8)), regulating adipocytes-produced estradiol. The top-ranking known urate loci was ABCG2, the strongest known gout risk locus, with an effect halved in obese compared to lean men (Pdifflean-obese= 2 x 10(-4)). Finally, pathway analysis suggested a role for N-glycan biosynthesis as a prominent urate-associated pathway in the lean stratum. These results illustrate a potentially powerful way to monitor changes occurring in obesogenic environment.</p>
  •  
5.
  • Justice, Anne E, et al. (författare)
  • Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits
  • 2017
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 8, s. 14977-14977
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.</p>
  •  
6.
  • Justice, Anne E., et al. (författare)
  • Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits
  • 2017
  • Ingår i: Nature Communications. - NATURE PUBLISHING GROUP. - 2041-1723 .- 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.</p>
  •  
7.
  • Justice, Anne E., et al. (författare)
  • Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution
  • 2019
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:3, s. 452-469
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF &gt;= 5%) and nine low-frequency or rare (MAF &lt; 5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.</p>
  •  
8.
  • Ligthart, Symen, et al. (författare)
  • Genome Analyses of &gt;200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders
  • 2018
  • Ingår i: American Journal of Human Genetics. - 0002-9297 .- 1537-6605. ; 103:5, s. 691-706
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p &lt; 5 × 10<sup>-8</sup>). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.</p>
  •  
9.
  • Mahajan, Anubha, et al. (författare)
  • Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps
  • 2018
  • Ingår i: Nature Genetics. - NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 50:11, s. 1505-
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci,135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency &lt;5%,14 with estimated allelic odds ratio &gt;2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for &gt;80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA &gt;80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).</p>
  •  
10.
  • Marouli, Eirini, et al. (författare)
  • Rare and low-frequency coding variants alter human adult height
  • 2017
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 542:7640, s. 186-190
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.</p>
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27
  • [1]23Nästa
Åtkomst
fritt online (8)
Typ av publikation
tidskriftsartikel (27)
Typ av innehåll
refereegranskat (27)
övrigt vetenskapligt (1)
Författare/redaktör
Hayward, Caroline (22)
Gudnason, Vilmundur (20)
Uitterlinden, Andre ... (19)
Boerwinkle, Eric (19)
Harris, Tamara B. (19)
Loos, Ruth J. F. (18)
visa fler...
Lu, Yingchang (18)
Taylor, Kent D. (18)
Teumer, Alexander (17)
Psaty, Bruce M. (17)
Bottinger, Erwin P. (17)
Rotter, Jerome I. (16)
Ridker, Paul M., (16)
Chasman, Daniel I., (16)
Esko, Tonu (16)
Rudan, Igor (16)
Van Duijn, Cornelia ... (15)
Fornage, Myriam (15)
Wareham, Nicholas J (15)
Linneberg, Allan, (15)
Grarup, Niels, (15)
Langenberg, Claudia (15)
Polasek, Ozren (15)
Liu, Yongmei (15)
Deary, Ian J. (14)
Launer, Lenore J. (14)
Laakso, Markku, (14)
Pedersen, Oluf, (14)
Hansen, Torben, (14)
Mohlke, Karen L (14)
Scott, Robert A (14)
Morris, Andrew P. (14)
Lind, Lars, (13)
Hofman, Albert (13)
Kuusisto, Johanna, (13)
Padmanabhan, Sandosh (13)
Lange, Leslie A. (13)
Balkau, Beverley (13)
Guo, Xiuqing (13)
Raitakari, Olli T (12)
Smith, Albert V. (12)
Bork-Jensen, Jette, (12)
Boehnke, Michael (12)
Zhao, Jing Hua (12)
Metspalu, Andres (12)
Lindgren, Cecilia M. (12)
Wilson, James G. (12)
Mahajan, Anubha (12)
Nalls, Mike A. (12)
Dehghan, Abbas, (12)
visa färre...
Lärosäte
Uppsala universitet (16)
Umeå universitet (5)
Lunds universitet (5)
Karolinska Institutet (2)
Göteborgs universitet (1)
Stockholms universitet (1)
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (25)
Naturvetenskap (3)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy