SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schuur Edward A. G.) ;lar1:(umu)"

Sökning: WFRF:(Schuur Edward A. G.) > Umeå universitet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
2.
  • Oehri, Jacqueline, et al. (författare)
  • Vegetation type is an important predictor of the arctic summer land surface energy budget
  • 2022
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.
  •  
3.
  • Hicks Pries, Caitlin E., et al. (författare)
  • Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems
  • 2015
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 21:12, s. 4508-4519
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (<5years and over a decade). Despite the Abisko peatland having greater ecosystem respiration and larger contributions from heterotrophic respiration than the Healy tundra, both systems responded consistently to short- and long-term warming with increased respiration, increased autotrophic contributions to ecosystem respiration, and increased ratios of autotrophic to heterotrophic respiration. We did not detect an increase in old soil carbon losses with warming at either site. If increased autotrophic respiration is balanced by increased primary production, as is the case in the Healy tundra, warming will not cause these ecosystems to become growing season carbon sources. Warming instead causes a persistent shift from heterotrophic to more autotrophic control of the growing season carbon cycle in these carbon-rich permafrost ecosystems.
  •  
4.
  • Mishra, Umakant, et al. (författare)
  • Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (4)
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Schuur, Edward A. G. (4)
Bret-Harte, M. Syndo ... (2)
Natali, Susan M. (2)
Rocha, Adrian V. (2)
Christensen, Torben ... (2)
Dorrepaal, Ellen (2)
visa fler...
Abbott, Benjamin W. (1)
Jones, Jeremy B. (1)
Chapin, F. Stuart, I ... (1)
Bowden, William B. (1)
Epstein, Howard E. (1)
Flannigan, Michael D ... (1)
Harms, Tamara K. (1)
Hollingsworth, Teres ... (1)
Mack, Michelle C. (1)
McGuire, A. David (1)
Tank, Suzanne E. (1)
Turetsky, Merritt R. (1)
Vonk, Jorien E. (1)
Wickland, Kimberly P ... (1)
Aiken, George R. (1)
Alexander, Heather D ... (1)
Amon, Rainer M. W. (1)
Benscoter, Brian W. (1)
Bergeron, Yves (1)
Bishop, Kevin (1)
Blarquez, Olivier (1)
Bond-Lamberty, Ben (1)
Breen, Amy L. (1)
Buffam, Ishi (1)
Cai, Yihua (1)
Carcaillet, Christop ... (1)
Carey, Sean K. (1)
Chen, Jing M. (1)
Chen, Han Y. H. (1)
Cooper, Lee W. (1)
Cornelissen, J. Hans ... (1)
de Groot, William J. (1)
DeLuca, Thomas H. (1)
Fetcher, Ned (1)
Finlay, Jacques C. (1)
Forbes, Bruce C. (1)
French, Nancy H. F. (1)
Gauthier, Sylvie (1)
Girardin, Martin P. (1)
Goetz, Scott J. (1)
Goldammer, Johann G. (1)
Gough, Laura (1)
Grogan, Paul (1)
Guo, Laodong (1)
visa färre...
Lärosäte
Stockholms universitet (2)
Göteborgs universitet (1)
Uppsala universitet (1)
Lunds universitet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy