SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sera Francesco) "

Sökning: WFRF:(Sera Francesco)

  • Resultat 1-10 av 14
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Cong, et al. (författare)
  • Ambient Particulate Air Pollution and Daily Mortality in 652 Cities
  • 2019
  • Ingår i: New England Journal of Medicine. - Waltham : Massachusetts Medical Society. - 0028-4793 .- 1533-4406. ; 381:8, s. 705-715
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The systematic evaluation of the results of time-series studies of air pollution is challenged by differences in model specification and publication bias.METHODS: We evaluated the associations of inhalable particulate matter (PM) with an aerodynamic diameter of 10 μm or less (PM10) and fine PM with an aerodynamic diameter of 2.5 μm or less (PM2.5) with daily all-cause, cardiovascular, and respiratory mortality across multiple countries or regions. Daily data on mortality and air pollution were collected from 652 cities in 24 countries or regions. We used overdispersed generalized additive models with random-effects meta-analysis to investigate the associations. Two-pollutant models were fitted to test the robustness of the associations. Concentration-response curves from each city were pooled to allow global estimates to be derived.RESULTS: On average, an increase of 10 μg per cubic meter in the 2-day moving average of PM10 concentration, which represents the average over the current and previous day, was associated with increases of 0.44% (95% confidence interval [CI], 0.39 to 0.50) in daily all-cause mortality, 0.36% (95% CI, 0.30 to 0.43) in daily cardiovascular mortality, and 0.47% (95% CI, 0.35 to 0.58) in daily respiratory mortality. The corresponding increases in daily mortality for the same change in PM2.5 concentration were 0.68% (95% CI, 0.59 to 0.77), 0.55% (95% CI, 0.45 to 0.66), and 0.74% (95% CI, 0.53 to 0.95). These associations remained significant after adjustment for gaseous pollutants. Associations were stronger in locations with lower annual mean PM concentrations and higher annual mean temperatures. The pooled concentration-response curves showed a consistent increase in daily mortality with increasing PM concentration, with steeper slopes at lower PM concentrations.CONCLUSIONS: Our data show independent associations between short-term exposure to PM10 and PM2.5 and daily all-cause, cardiovascular, and respiratory mortality in more than 600 cities across the globe. These data reinforce the evidence of a link between mortality and PM concentration established in regional and local studies. (Funded by the National Natural Science Foundation of China and others.).
  •  
2.
  • Zhao, Qi, et al. (författare)
  • Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019 : a three-stage modelling study
  • 2021
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 5:7, s. e415-e425
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures.METHODS: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5° × 0·5° across the globe. A three-stage analysis strategy was used. First, the temperature-mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature-mortality association between 2000 and 2019 was predicted by use of the fitted meta-regression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100 000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division.FINDINGS: Globally, 5 083 173 deaths (95% empirical CI [eCI] 4 087 967-5 965 520) were associated with non-optimal temperatures per year, accounting for 9·43% (95% eCI 7·58-11·07) of all deaths (8·52% [6·19-10·47] were cold-related and 0·91% [0·56-1·36] were heat-related). There were 74 temperature-related excess deaths per 100 000 residents (95% eCI 60-87). The mortality burden varied geographically. Of all excess deaths, 2 617 322 (51·49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000-03 to 2016-19, the global cold-related excess death ratio changed by -0·51 percentage points (95% eCI -0·61 to -0·42) and the global heat-related excess death ratio increased by 0·21 percentage points (0·13-0·31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe.INTERPRETATION: Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios.
  •  
3.
  • Armstrong, Ben, et al. (författare)
  • The Role of Humidity in Associations of High Temperature with Mortality : A Multicountry, Multicity Study
  • 2019
  • Ingår i: Journal of Environmental Health Perspectives. - : The National Institute of Environmental Health Sciences. - 0091-6765 .- 1552-9924. ; 127:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is strong experimental evidence that physiologic stress from high temperatures is greater if humidity is higher. However, heat indices developed to allow for this have not consistently predicted mortality better than dry-bulb temperature.Objectives: We aimed to clarify the potential contribution of humidity an addition to temperature in predicting daily mortality in summer by using a large multicountry dataset.Methods: In 445 cities in 24 countries, we fit a time-series regression model for summer mortality with a distributed lag nonlinear model (DLNM) for temperature (up to lag 3) and supplemented this with a range of terms for relative humidity (RH) and its interaction with temperature. City-specific associations were summarized using meta-analytic techniques.Results: Adding a linear term for RH to the temperature term improved fit slightly, with an increase of 23% in RH (the 99th percentile anomaly) associated with a 1.1% [95% confidence interval (CI): 0.8, 1.3] decrease in mortality. Allowing curvature in the RH term or adding terms for interaction of RH with temperature did not improve the model fit. The humidity-related decreased risk was made up of a positive coefficient at lag 0 outweighed by negative coefficients at lags of 1–3 d. Key results were broadly robust to small model changes and replacing RH with absolute measures of humidity. Replacing temperature with apparent temperature, a metric combining humidity and temperature, reduced goodness of fit slightly.Discussion:The absence of a positive association of humidity with mortality in summer in this large multinational study is counter to expectations from physiologic studies, though consistent with previous epidemiologic studies finding little evidence for improved prediction by heat indices. The result that there was a small negative average association of humidity with mortality should be interpreted cautiously; the lag structure has unclear interpretation and suggests the need for future work to clarify.
  •  
4.
  • Chen, Gongbo, et al. (författare)
  • Mortality risk attributable to wildfire-related PM2·5 pollution : a global time series study in 749 locations
  • 2021
  • Ingår i: The Lancet Planetary Health. - : Elsevier. - 2542-5196. ; 5:9, s. e579-e587
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Many regions of the world are now facing more frequent and unprecedentedly large wildfires. However, the association between wildfire-related PM2·5 and mortality has not been well characterised. We aimed to comprehensively assess the association between short-term exposure to wildfire-related PM2·5 and mortality across various regions of the world.METHODS: For this time series study, data on daily counts of deaths for all causes, cardiovascular causes, and respiratory causes were collected from 749 cities in 43 countries and regions during 2000-16. Daily concentrations of wildfire-related PM2·5 were estimated using the three-dimensional chemical transport model GEOS-Chem at a 0·25° × 0·25° resolution. The association between wildfire-related PM2·5 exposure and mortality was examined using a quasi-Poisson time series model in each city considering both the current-day and lag effects, and the effect estimates were then pooled using a random-effects meta-analysis. Based on these pooled effect estimates, the population attributable fraction and relative risk (RR) of annual mortality due to acute wildfire-related PM2·5 exposure was calculated.FINDINGS: 65·6 million all-cause deaths, 15·1 million cardiovascular deaths, and 6·8 million respiratory deaths were included in our analyses. The pooled RRs of mortality associated with each 10 μg/m3 increase in the 3-day moving average (lag 0-2 days) of wildfire-related PM2·5 exposure were 1·019 (95% CI 1·016-1·022) for all-cause mortality, 1·017 (1·012-1·021) for cardiovascular mortality, and 1·019 (1·013-1·025) for respiratory mortality. Overall, 0·62% (95% CI 0·48-0·75) of all-cause deaths, 0·55% (0·43-0·67) of cardiovascular deaths, and 0·64% (0·50-0·78) of respiratory deaths were annually attributable to the acute impacts of wildfire-related PM2·5 exposure during the study period.INTERPRETATION: Short-term exposure to wildfire-related PM2·5 was associated with increased risk of mortality. Urgent action is needed to reduce health risks from the increasing wildfires.
  •  
5.
  • Chen, Kai, et al. (författare)
  • Ambient carbon monoxide and daily mortality: a global time-series study in 337 cities
  • 2021
  • Ingår i: The Lancet Planetary Health. - 2542-5196. ; 5:4, s. e191-e199
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Epidemiological evidence on short-term association between ambient carbon monoxide (CO) and mortality is inconclusive and limited to single cities, regions, or countries. Generalisation of results from previous studies is hindered by potential publication bias and different modelling approaches. We therefore assessed the association between short-term exposure to ambient CO and daily mortality in a multicity, multicountry setting. Methods: We collected daily data on air pollution, meteorology, and total mortality from 337 cities in 18 countries or regions, covering various periods from 1979 to 2016. All included cities had at least 2 years of both CO and mortality data. We estimated city-specific associations using confounder-adjusted generalised additive models with a quasi-Poisson distribution, and then pooled the estimates, accounting for their statistical uncertainty, using a random-effects multilevel meta-analytical model. We also assessed the overall shape of the exposure–response curve and evaluated the possibility of a threshold below which health is not affected. Findings: Overall, a 1 mg/m3 increase in the average CO concentration of the previous day was associated with a 0·91% (95% CI 0·32–1·50) increase in daily total mortality. The pooled exposure–response curve showed a continuously elevated mortality risk with increasing CO concentrations, suggesting no threshold. The exposure–response curve was steeper at daily CO levels lower than 1 mg/m3, indicating greater risk of mortality per increment in CO exposure, and persisted at daily concentrations as low as 0·6 mg/m3 or less. The association remained similar after adjustment for ozone but was attenuated after adjustment for particulate matter or sulphur dioxide, or even reduced to null after adjustment for nitrogen dioxide. Interpretation: This international study is by far the largest epidemiological investigation on short-term CO-related mortality. We found significant associations between ambient CO and daily mortality, even at levels well below current air quality guidelines. Further studies are warranted to disentangle its independent effect from other traffic-related pollutants. Funding: EU Horizon 2020, UK Medical Research Council, and Natural Environment Research Council.
  •  
6.
  • Freisling, Heinz, et al. (författare)
  • Region-Specific Nutrient Intake Patterns Exhibit a Geographical Gradient within and between European Countries
  • 2010
  • Ingår i: Journal of Nutrition. - : Oxford University Press. - 1541-6100 .- 0022-3166. ; 140:7, s. 1280-1286
  • Tidskriftsartikel (refereegranskat)abstract
    • Until recently, the study of nutrient patterns was hampered at an international level by a lack of standardization of both dietary methods and nutrient databases. We aimed to describe the diversity of nutrient patterns in the European Prospective Investigation into Cancer and Nutrition (EPIC) study at population level as a starting point for future nutrient pattern analyses and their associations with chronic diseases in multi-center studies. In this cross-sectional study, 36,034 persons aged 35-74 y were administered a single, standardized 24-h dietary recall. Intake of 25 nutrients (excluding intake from dietary supplements) was estimated using a standardized nutrient database. We used a graphic presentation of mean nutrient intakes by region and sex relative to the overall EPIC means to contrast patterns within and between 10 European countries. In Mediterranean regions, including Greece, Italy, and the southern centers of Spain, the nutrient pattern was dominated by relatively high intakes of vitamin E and monounsaturated fatty acids (MUFA), whereas intakes of retinol and vitamin D were relatively low. In contrast, in Nordic countries, including Norway, Sweden, and Denmark, reported intake of these same nutrients resulted in almost the opposite pattern. Population groups in Germany, The Netherlands, and the UK shared a fatty acid pattern of relatively high intakes of PUFA and SFA and relatively low intakes of MUFA, in combination with a relatively high intake of sugar. We confirmed large variability in nutrient intakes across the EPIC study populations and identified 3 main region-specific patterns with a geographical gradient within and between European countries. J. Nutr. 140: 1280-1286, 2010.
  •  
7.
  • Gasparrini, Antonio, et al. (författare)
  • Projections of temperature-related excess mortality under climate change scenarios
  • 2017
  • Ingår i: The Lancet Planetary Health. - 2542-5196. ; 1:9, s. e360-e367
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates.Methods: We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature-mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990-2099 under each scenario of climate change, assuming no adaptation or population changes.Findings: Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090-99 compared with 2010-19 ranging from -1·2% (empirical 95% CI -3·6 to 1·4) in Australia to -0·1% (-2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (-3·0 to 9·3) in Central America to 12·7% (-4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet.Interpretation: This study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks.
  •  
8.
  • Guo, Yuming, et al. (författare)
  • Quantifying excess deaths related to heatwaves under climate change scenarios : A multicountry time series modelling study
  • 2018
  • Ingår i: PLoS Medicine. - 1549-1277 .- 1549-1676. ; 15:7
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Heatwaves are a critical public health problem. There will be an increase in the frequency and severity of heatwaves under changing climate. However, evidence about the impacts of climate change on heatwave-related mortality at a global scale is limited.METHODS AND FINDINGS: We collected historical daily time series of mean temperature and mortality for all causes or nonexternal causes, in periods ranging from January 1, 1984, to December 31, 2015, in 412 communities within 20 countries/regions. We estimated heatwave-mortality associations through a two-stage time series design. Current and future daily mean temperature series were projected under four scenarios of greenhouse gas emissions from 1971-2099, with five general circulation models. We projected excess mortality in relation to heatwaves in the future under each scenario of greenhouse gas emissions, with two assumptions for adaptation (no adaptation and hypothetical adaptation) and three scenarios of population change (high variant, median variant, and low variant). Results show that, if there is no adaptation, heatwave-related excess mortality is expected to increase the most in tropical and subtropical countries/regions (close to the equator), while European countries and the United States will have smaller percent increases in heatwave-related excess mortality. The higher the population variant and the greenhouse gas emissions, the higher the increase of heatwave-related excess mortality in the future. The changes in 2031-2080 compared with 1971-2020 range from approximately 2,000% in Colombia to 150% in Moldova under the highest emission scenario and high-variant population scenario, without any adaptation. If we considered hypothetical adaptation to future climate, under high-variant population scenario and all scenarios of greenhouse gas emissions, the heatwave-related excess mortality is expected to still increase across all the countries/regions except Moldova and Japan. However, the increase would be much smaller than the no adaptation scenario. The simple assumptions with respect to adaptation as follows: no adaptation and hypothetical adaptation results in some uncertainties of projections.CONCLUSIONS: This study provides a comprehensive characterisation of future heatwave-related excess mortality across various regions and under alternative scenarios of greenhouse gas emissions, different assumptions of adaptation, and different scenarios of population change. The projections can help decision makers in planning adaptation and mitigation strategies for climate change.
  •  
9.
  • Lee, Jae Young, et al. (författare)
  • Predicted temperature-increase-induced global health burden and its regional variability
  • 2019
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 131
  • Tidskriftsartikel (refereegranskat)abstract
    • An increase in the global health burden of temperature was projected for 459 locations in 28 countries worldwide under four representative concentration pathway scenarios until 2099. We determined that the amount of temperature increase for each 100 ppm increase in global CO2 concentrations is nearly constant, regardless of climate scenarios. The overall average temperature increase during 2010-2099 is largest in Canada (1.16 °C/100 ppm) and Finland (1.14 °C/100 ppm), while it is smallest in Ireland (0.62 °C/100 ppm) and Argentina (0.63 °C/100 ppm). In addition, for each 1 °C temperature increase, the amount of excess mortality is increased largely in tropical countries such as Vietnam (10.34%p/°C) and the Philippines (8.18%p/°C), while it is decreased in Ireland (-0.92%p/°C) and Australia (-0.32%p/°C). To understand the regional variability in temperature increase and mortality, we performed a regression-based modeling. We observed that the projected temperature increase is highly correlated with daily temperature range at the location and vulnerability to temperature increase is affected by health expenditure, and proportions of obese and elderly population.
  •  
10.
  • Lee, Whanhee, et al. (författare)
  • Mortality burden of diurnal temperature range and its temporal changes : a multi-country study
  • 2018
  • Ingår i: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 110, s. 123-130
  • Tidskriftsartikel (refereegranskat)abstract
    • Although diurnal temperature range (DTR) is a key index of climate change, few studies have reported the health burden of DTR and its temporal changes at a multi-country scale. Therefore, we assessed the attributable risk fraction of DTR on mortality and its temporal variations in a multi-country data set. We collected time-series data covering mortality and weather variables from 308 cities in 10 countries from 1972 to 2013. The temporal change in DTR-related mortality was estimated for each city with a time-varying distributed lag model. Estimates for each city were pooled using a multivariate meta-analysis. The results showed that the attributable fraction of total mortality to DTR was 2.5% (95% eCI: 2.3-2.7%) over the entire study period. In all countries, the attributable fraction increased from 2.4% (2.1-2.7%) to 2.7% (2.4-2.9%) between the first and last study years. This study found that DTR has significantly contributed to mortality in all the countries studied, and this attributable fraction has significantly increased over time in the USA, the UK, Spain, and South Korea. Therefore, because the health burden of DTR is not likely to reduce in the near future, countermeasures are needed to alleviate its impact on human health.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
  • [1]2Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy