SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sergeev V. A.) ;pers:(Lindqvist Per Arne)"

Sökning: WFRF:(Sergeev V. A.) > Lindqvist Per Arne

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Varsani, A., et al. (författare)
  • Simultaneous Remote Observations of Intense Reconnection Effects by DMSP and MMS Spacecraft During a Storm Time Substorm
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:11, s. 10891-10909
  • Tidskriftsartikel (refereegranskat)abstract
    • During a magnetic storm on 23 June 2015, several very intense substorms took place, with signatures observed by multiple spacecraft including DMSP and Magnetospheric Multiscale (MMS). At the time of interest, DMSP F18 crossed inbound through a poleward expanding auroral bulge boundary at 23.5 h magnetic local time (MLT), while MMS was located duskward of 22 h MLT during an inward crossing of the expanding plasma sheet boundary. The two spacecraft observed a consistent set of signatures as they simultaneously crossed the reconnection separatrix layer during this very intense reconnection event. These include (1) energy dispersion of the energetic ions and electrons traveling earthward, accompanied with high electron energies in the vicinity of the separatrix; (2) energy dispersion of polar rain electrons, with a high-energy cutoff; and (3) intense inward convection of the magnetic field lines at the MMS location. The high temporal resolution measurements by MMS provide unprecedented observations of the outermost electron boundary layer. We discuss the relevance of the energy dispersion of the electrons, and their pitch angle distribution, to the spatial and temporal evolution of the boundary layer. The results indicate that the underlying magnetotail magnetic reconnection process was an intrinsically impulsive and the active X-line was located relatively close to the Earth, approximately at 16-18 R-E.
  •  
2.
  • Nakamura, R., et al. (författare)
  • Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:10, s. 4841-4849
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.
  •  
3.
  • Nakamura, Rumi, et al. (författare)
  • Multiscale Currents Observed by MMS in the Flow Braking Region
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:2, s. 1260-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold ExB drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.
  •  
4.
  • Nakamura, Rumi, et al. (författare)
  • Near-Earth plasma sheet boundary dynamics during substorm dipolarization
  • 2017
  • Ingår i: Earth Planets and Space. - : Springer Berlin/Heidelberg. - 1343-8832 .- 1880-5981. ; 69
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the large-scale evolution of dipolarization in the near-Earth plasma sheet during an intense (AL similar to -1000 nT) substorm on August 10, 2016, when multiple spacecraft at radial distances between 4 and 15 RE were present in the night-side magnetosphere. This global dipolarization consisted of multiple short-timescale (a couple of minutes) Bz disturbances detected by spacecraft distributed over 9 MLT, consistent with the large-scale substorm current wedge observed by ground-based magnetometers. The four spacecraft of the Magnetospheric Multiscale were located in the southern hemisphere plasma sheet and observed fast flow disturbances associated with this dipolarization. The high-time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and flow disturbances separately. A distinct pattern of the flow and field disturbance near the plasma boundaries was found. We suggest that a vortex motion created around the localized flows resulted in another fieldaligned current system at the off-equatorial side of the BBF-associated R1/R2 systems, as was predicted by the MHD simulation of a localized reconnection jet. The observations by GOES and Geotail, which were located in the opposite hemisphere and local time, support this view. We demonstrate that the processes of both Earthward flow braking and of accumulated magnetic flux evolving tailward also control the dynamics in the boundary region of the near-Earth plasma sheet.
  •  
5.
  • Sergeev, V. A., et al. (författare)
  • Substorm-Related Near-Earth Reconnection Surge : Combining Telescopic and Microscopic Views
  • 2019
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 46:12, s. 6239-6247
  • Tidskriftsartikel (refereegranskat)abstract
    • A strong ~11-min-long surge of the lobe reconnection was observed during a substorm on the tailward side of the near-Earth neutral line. In the southern lobe near the reconnection separatrix the MMS spacecraft observed short-duration earthward electron beams providing the local Hall current, tailward propagating Alfven wave (AW) bursts with Poynting flux up to 10−4 W/m2, and large-amplitude E field spikes (e-holes) and low hybrid waves. The reconnection surge was accompanied by substorm current wedge formation and fast poleward expansion of auroral bulge-related westward electrojet in the conjugate ionosphere. During its meridional crossing above the expanding bulge the Metop-2 spacecraft observed an intense energetic precipitation spike near the expected X line foot point and confirmed the dipolarized character of magnetic field lines inside of the bulge. Globally the observed average reconnection rate (<Ey > ~3.3 mV/m) was sufficient to produce the magnetic flux increase in the bulge, associated with observed fast poleward expansion (about 6° latitude in 5 min).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy