SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Serjeant S.) "

Sökning: WFRF:(Serjeant S.)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Delabrouille, J., et al. (författare)
  • Exploring cosmic origins with CORE : Survey requirements and mission design
  • 2018
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :4
  • Tidskriftsartikel (refereegranskat)abstract
    • Future observations of cosmic microwave background (CMB) polarisation have the potential to answer some of the most fundamental questions of modern physics and cosmology, including: what physical process gave birth to the Universe we see today? What are the dark matter and dark energy that seem to constitute 95% of the energy density of the Universe? Do we need extensions to the standard model of particle physics and fundamental interactions? Is the ACDM cosmological scenario correct, or are we missing an essential piece of the puzzle? In this paper, we list the requirements for a future CMB polarisation survey addressing these scientific objectives, and discuss the design drivers of the CORE space mission proposed to ESA in answer to the M5 call for a medium-sized mission. The rationale and options, and the methodologies used to assess the mission's performance, are of interest to other future CMB mission design studies. CORE has 19 frequency channels, distributed over a broad frequency range, spanning the 60-600 GHz interval, to control astrophysical foreground emission. The angular resolution ranges from 2' to 18', and the aggregate CMB sensitivity is about 2 mu K.arcmin. The observations are made with a single integrated focal-plane instrument, consisting of an array of 2100 cryogenically-cooled, linearly-polarised detectors at the focus of a 1.2-m aperture cross-Dragone telescope. The mission is designed to minimise all sources of systematic effects, which must be controlled so that no more than 10(-4) of the intensity leaks into polarisation maps, and no more than about 1% of E-type polarisation leaks into B-type modes. CORE observes the sky from a large Lissajous orbit around the Sun-Earth L2 point on an orbit that offers stable observing conditions and avoids contamination from sidelobe pick-up of stray radiation originating from the Sun, Earth, and Moon. The entire sky is observed repeatedly during four years of continuous scanning, with a combination of three rotations of the spacecraft over different timescales. With about 50% of the sky covered every few days, this scan strategy provides the mitigation of systematic effects and the internal redundancy that are needed to convincingly extract the primordial B-mode signal on large angular scales, and check with adequate sensitivity the consistency of the observations in several independent data subsets. CORE is designed as a near-ultimate CMB polarisation mission which, for optimal complementarity with ground-based observations, will perform the observations that are known to be essential to CMB polarisation science and cannot be obtained by any other means than a dedicated space mission. It will provide well-characterised, highly-redundant multi-frequency observations of polarisation at all the scales where foreground emission and cosmic variance dominate the final uncertainty for obtaining precision CMB science, as well as 2' angular resolution maps of high-frequency foreground emission in the 300-600 GHz frequency range, essential for complementarity with future ground-based observations with large telescopes that can observe the CMB with the same beamsize.
  •  
2.
  • De Zotti, G., et al. (författare)
  • Exploring cosmic origins with CORE : Extragalactic sources in cosmic microwave background maps
  • 2018
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :4
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss the potential of a next generation space-borne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE, that has been submitted in response to ESA's call for a Medium-size mission opportunity as the successor of the Planck satellite. Even though the effective telescope size will be somewhat smaller than that of Planck, CORE will have a considerably better angular resolution at its highest frequencies, since, in contrast with Planck, it will be diffraction limited at all frequencies. The improved resolution implies a considerable decrease of the source confusion, i.e. substantially fainter detection limits. In particular, CORE will detect thousands of strongly lensed high-z galaxies distributed over the full sky. The extreme brightness of these galaxies will make it possible to study them, via follow-up observations, in extraordinary detail. Also, the CORE resolution matches the typical sizes of high-z galaxy proto-clusters much better than the Planck resolution, resulting in a much higher detection efficiency; these objects will be caught in an evolutionary phase beyond the reach of surveys in other wavebands. Furthermore, CORE will provide unique information on the evolution of the star formation in virialized groups and clusters of galaxies up to the highest possible redshifts. Finally, thanks to its very high sensitivity, CORE will detect the polarized emission of thousands of radio sources and, for the first time, of dusty galaxies, at mm and sub-mm wavelengths, respectively.
  •  
3.
  • Berta, S., et al. (författare)
  • z -GAL: A NOEMA spectroscopic redshift survey of bright Herschel galaxies: III. Physical properties
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 678
  • Tidskriftsartikel (refereegranskat)abstract
    • The z-GAL survey observed 137 bright Herschel-selected targets with the IRAM Northern Extended Millimeter Array, with the aim to measure their redshift and study their properties. Several of them have been resolved into multiple sources. Consequently, robust spectroscopic redshifts have been measured for 165 individual galaxies in the range 0.8., <., z., <., 6.5. In this paper we analyse the millimetre spectra of the z-GAL sources, using both their continuum and line emission to derive their physical properties. At least two spectral lines are detected for each source, including transitions of 12CO, [CI], and H2O. The observed 12CO line ratios and spectral line energy distributions of individual sources resemble those of local starbursts. In seven sources the para-H2O (211-202) transition is detected and follows the IR versus H2O luminosity relation of sub-millimetre galaxies. The molecular gas mass of the z-GAL sources is derived from their 12CO, [CI], and sub-millimetre dust continuum emission. The three tracers lead to consistent results, with the dust continuum showing the largest scatter when compared to 12CO. The gas-to-dust mass ratio of these sources was computed by combining the information derived from 12CO and the dust continuum and has a median value of 107, similar to star-forming galaxies of near-solar metallicity. The same combined analysis leads to depletion timescales in the range between 0.1 and 1.0 Gyr, which place the z-GAL sources between the main sequence' of star formation and the locus of starbursts. Finally, we derived a first estimate of stellar masses "modulo possible gravitational magnification "by inverting known gas scaling relations: the z-GAL sample is confirmed to be mostly composed by starbursts, whereas ∼25% of its members lie on the main sequence of star-forming galaxies (within ±0.5 dex).
  •  
4.
  • Borsato, E., et al. (författare)
  • Characterization of Herschel-selected strong lens candidates through HST and sub-mm/mm observations
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 528:4, s. 6222-6279
  • Tidskriftsartikel (refereegranskat)abstract
    • We have carried out Hubble Space Telescope (HST) snapshot observations at 1.1 μm of 281 candidate strongly lensed galaxies identified in the wide-area extragalactic surveys conducted with the Herschel Space Observatory. Our candidates comprise systems with flux densities at 500 μm, S500 ≥ 80 mJy. We model and subtract the surface brightness distribution for 130 systems, where we identify a candidate for the foreground lens candidate. After combining visual inspection, archival high-resolution observations, and lens subtraction, we divide the systems into different classes according to their lensing likelihood. We confirm 65 systems to be lensed. Of these, 30 are new discoveries. We successfully perform lens modelling and source reconstruction on 23 systems, where the foreground lenses are isolated galaxies and the background sources are detected in the HST images. All the systems are successfully modelled as a singular isothermal ellipsoid. The Einstein radii of the lenses and the magnifications of the background sources are consistent with previous studies. However, the background source circularized radii (between 0.34 and 1.30 kpc) are ∼3 times smaller than the ones measured in the sub-millimetre/millimetre for a similarly selected and partially overlapping sample. We compare our lenses with those in the Sloan Lens Advanced Camera for Surveys (ACS) Survey confirming that our lens-independent selection is more effective at picking up fainter and diffuse galaxies and group lenses. This sample represents the first step towards characterizing the near-infrared properties and stellar masses of the gravitationally lensed dusty star-forming galaxies.
  •  
5.
  • Cox, P., et al. (författare)
  • z-GAL: A NOEMA spectroscopic redshift survey of bright Herschel galaxies: I. Overview
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 678
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the IRAM NOrthern Extended Millimetre Array (NOEMA), we conducted a Large Programme (z-GAL) to measure redshifts for 126 bright galaxies detected in the Herschel Astrophysical Large Area Survey (H-ATLAS), the HerMES Large Mode Survey (HeLMS), and the Herschel Stripe 82 (HerS) Survey. We report reliable spectroscopic redshifts for a total of 124 of the Herschel-selected galaxies. The redshifts are estimated from scans of the 3 and 2-mm bands (and, for one source, the 1-mm band), covering up to 31 GHz in each band, and are based on the detection of at least two emission lines. Together with the Pilot Programme, where 11 sources had their spectroscopic redshifts measured, our survey has derived precise redshifts for 135 bright Herschel-selected galaxies, making it the largest sample of high-z galaxies with robust redshifts to date. Most emission lines detected are from 12CO (mainly from J = 2 1 to 5 4), with some sources seen in [CI] and H2O emission lines. The spectroscopic redshifts are in the range 0.8
  •  
6.
  • Geach, J.E., et al. (författare)
  • The SCUBA-2 Cosmology Legacy Survey: blank-field number counts of 450-mu m-selected galaxies and their contribution to the cosmic infrared background
  • 2013
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 432:1, s. 53-61
  • Tidskriftsartikel (refereegranskat)abstract
    • The first deep blank-field 450 mu m map (1 sigma approximate to 1.3 mJy) from the Submillimetre Common-User Bolometer Array-2 SCUBA-2 Cosmology Legacy Survey (S2CLS), conducted with the James Clerk Maxwell Telescope (JCMT) is presented. Our map covers 140 arcmin(2) of the Cosmological Evolution Survey field, in the footprint of the Hubble Space Telescope (HST) Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey. Using 60 submillimetre galaxies detected at >= 3.75s, we evaluate the number counts of 450-mu m-selected galaxies with flux densities S-450 > 5 mJy. The 8 arcsec JCMT beam and high sensitivity of SCUBA-2 now make it possible to directly resolve a larger fraction of the cosmic infrared background (CIB, peaking at. similar to 200 mu m) into the individual galaxies responsible for its emission than has previously been possible at this wavelength. At S450 > 5 mJy, we resolve (7.4 +/- 0.7) x 10(-2) MJy sr(-1) of the CIB at 450 mu m (equivalent to 16 +/- 7 per cent of the absolute brightness measured by the Cosmic Background Explorer at this wavelength) into point sources. A further similar to 40 per cent of the CIB can be recovered through a statistical stack of 24 mu m emitters in this field, indicating that the majority (approximate to 60 per cent) of the CIB at 450 mu m is emitted by galaxies with S450 > 2 mJy. The average redshift of 450 mu m emitters identified with an optical/near-infrared counterpart is estimated to be = 1.3, implying that the galaxies in the sample are in the ultraluminous class (LIR approximate to 1.1 x 1012 L approximate to). If the galaxies contributing to the statistical stack lie at similar redshifts, then the majority of the CIB at 450 mu m is emitted by galaxies in the luminous infrared galaxy (LIRG) class with LIR > 3.6 x 1011 L-circle dot.
  •  
7.
  • Ismail, D., et al. (författare)
  • z-GAL: A NOEMA spectroscopic redshift survey of bright Herschel galaxies: II. Dust properties
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 678
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the dust properties of 125 bright Herschel galaxies selected from the z-GAL NOEMA spectroscopic redshift survey. All the galaxies have precise spectroscopic redshifts in the range 1.3 < z < 5.4. The large instantaneous bandwidth of NOEMA provides an exquisite sampling of the underlying dust continuum emission at 2 and 3 mm in the observed frame, with flux densities in at least four sidebands for each source. Together with the available Herschel 250, 350, and 500 μm and SCUBA-2 850 μm flux densities, the spectral energy distribution (SED) of each source can be analyzed from the far-infrared to the millimeter, with a fine sampling of the Rayleigh-Jeans tail. This wealth of data provides a solid basis to derive robust dust properties, in particular the dust emissivity index (β) and the dust temperature (Tdust). In order to demonstrate our ability to constrain the dust properties, we used a flux-generated mock catalog and analyzed the results under the assumption of an optically thin and optically thick modified black body emission. The robustness of the SED sampling for the z-GAL sources is highlighted by the mock analysis that showed high accuracy in estimating the continuum dust properties. These findings provided the basis for our detailed analysis of the z-GAL continuum data. We report a range of dust emissivities with β ∼1.5 -3 estimated up to high precision with relative uncertainties that vary in the range 7% 15%, and an average of 2.2 ± 0.3. We find dust temperatures varying from 20 to 50 K with an average of Tdust., ∼30 K for the optically thin case and Tdust., ∼38 K in the optically thick case. For all the sources, we estimate the dust masses and apparent infrared luminosities (based on the optically thin approach). An inverse correlation is found between Tdust and β with β Tdust-0.69, which is similar to what is seen in the local Universe. Finally, we report an increasing trend in the dust temperature as a function of redshift at a rate of 6.5 ±0.5 K/z for this 500 μm-selected sample. Based on this study, future prospects are outlined to further explore the evolution of dust temperature across cosmic time.
  •  
8.
  • Spinoglio, L., et al. (författare)
  • 2017
  • Ingår i: Publications Astronomical Society of Australia. - : Cambridge University Press (CUP). - 1323-3580 .- 1448-6083. ; 34
  • Tidskriftsartikel (refereegranskat)abstract
    • IR spectroscopy in the range 12-230 mu m with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes governing the formation and evolution of galaxies and black holes through cosmic time, bridging the gap between the James Webb Space Telescope and the upcoming Extremely Large Telescopes at shorter wavelengths and the Atacama Large Millimeter Array at longer wavelengths. The SPICA, with its 2.5-m telescope actively cooled to below 8 K, will obtain the first spectroscopic determination, in the mid-IR rest-frame, of both the star-formation rate and black hole accretion rate histories of galaxies, reaching lookback times of 12 Gyr, for large statistically significant samples. Densities, temperatures, radiation fields, and gas-phase metallicities will be measured in dust-obscured galaxies and active galactic nuclei, sampling a large range in mass and luminosity, from faint local dwarf galaxies to luminous quasars in the distant Universe. Active galactic nuclei and starburst feedback and feeding mechanisms in distant galaxies will be uncovered through detailed measurements of molecular and atomic line profiles. The SPICA's large-area deep spectrophotometric surveys will provide mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, out to redshifts of z similar to 6.
  •  
9.
  • Bakx, Tom, 1990, et al. (författare)
  • A dusty protocluster surrounding the binary galaxy HerBS-70 at z = 2.3
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 530:4, s. 4578-4596
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on deep SCUBA-2 observations at 850 μm and NOrthern Extended Millimetre Array (NOEMA) spectroscopic measurements at 2 mm of the environment surrounding the luminous, massive (M∗ ≈ 2 × 1011 M☉) Herschel-selected source HerBS-70. This source was revealed by previous NOEMA observations to be a binary system of dusty star-forming galaxies at z = 2.3, with the east component (HerBS-70E) hosting an active galactic nucleus. The SCUBA-2 observations detected, in addition to the binary system, 21 sources at >3.5σ over an area of ∼25 square comoving Mpc with a sensitivity of 1σ850 = 0.75 mJy. The surface density of continuum sources around HerBS-70 is three times higher than for field galaxies. The NOEMA spectroscopic measurements confirm the protocluster membership of three of the nine brightest sources through their CO(4–3) line emission, yielding a volume density 36 times higher than for field galaxies. All five confirmed sub-mm galaxies in the HerBS-70 system have relatively short gas depletion times (80−500 Myr), indicating the onset of quenching for this protocluster core due to the depletion of gas. The dark matter halo mass of the HerBS-70 system is estimated around 5 × 1013 M☉, with a projected current-day mass of 1015 M☉, similar to the local Virgo and Coma clusters. These observations support the claim that DSFGs, in particular the ones with observed multiplicity, can trace cosmic overdensities.
  •  
10.
  • Bendo, G. J., et al. (författare)
  • The bright extragalactic ALMA redshift survey (BEARS) – II. Millimetre photometry of gravitational lens candidates
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 522:2, s. 2995-3017
  • Tidskriftsartikel (refereegranskat)abstract
    • We present 101- and 151-GHz ALMA continuum images for 85 fields selected from Herschel observations that have 500-μm flux densities >80 mJy and 250–500-μm colours consistent with z > 2, most of which are expected to be gravitationally lensed or hyperluminous infrared galaxies. Approximately half of the Herschel 500-μm sources were resolved into multiple ALMA sources, but 11 of the 15 brightest 500-μm Herschel sources correspond to individual ALMA sources. For the 37 fields containing either a single source with a spectroscopic redshift or two sources with the same spectroscopic redshift, we examined the colour temperatures and dust emissivity indices. The colour temperatures only vary weakly with redshift and are statistically consistent with no redshift-dependent temperature variations, which generally corresponds to results from other samples selected in far-infrared, submillimetre, or millimetre bands but not to results from samples selected in optical or near-infrared bands. The dust emissivity indices, with very few exceptions, are largely consistent with a value of 2. We also compared spectroscopic redshifts to photometric redshifts based on spectral energy distribution templates designed for infrared-bright high-redshift galaxies. While the templates systematically underestimate the redshifts by ∼15 per cent, the inclusion of ALMA data decreases the scatter in the predicted redshifts by a factor of ∼2, illustrating the potential usefulness of these millimetre data for estimating photometric redshifts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy