SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sharma S) ;lar1:(ri)"

Sökning: WFRF:(Sharma S) > RISE

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jakubek, Ryan S., et al. (författare)
  • Calibration of Raman Bandwidths on the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Deep Ultraviolet Raman and Fluorescence Instrument Aboard the Perseverance Rover
  • 2023
  • Ingår i: Applied Spectroscopy. - : SAGE Publications Inc.. - 0003-7028 .- 1943-3530.
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we derive a simple method for calibrating Raman bandwidths for the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument onboard NASA’s Perseverance rover. Raman bandwidths and shapes reported by an instrument contain contributions from both the intrinsic Raman band (IRB) and instrumental artifacts. To directly correlate bandwidth to sample properties and to compare bandwidths across instruments, the IRB width needs to be separated from instrumental effects. Here, we use the ubiquitous bandwidth calibration method of modeling the observed Raman bands as a convolution of a Lorentzian IRB and a Gaussian instrument slit function. Using calibration target data, we calculate that SHERLOC has a slit function width of 34.1 cm–1. With a measure of the instrument slit function, we can deconvolve the IRB from the observed band, providing the width of the Raman band unobscured by instrumental artifact. We present the correlation between observed Raman bandwidth and intrinsic Raman bandwidth in table form for the quick estimation of SHERLOC Raman intrinsic bandwidths. We discuss the limitations of using this model to calibrate Raman bandwidth and derive a quantitative method for calculating the errors associated with the calibration. We demonstrate the utility of this method of bandwidth calibration by examining the intrinsic bandwidths of SHERLOC sulfate spectra and by modeling the SHERLOC spectrum of olivine. 
  •  
2.
  • Geng, Lihong, et al. (författare)
  • Structure characterization of cellulose nanofiber hydrogel as functions of concentration and ionic strength
  • 2017
  • Ingår i: Cellulose. - : Springer Netherlands. - 0969-0239 .- 1572-882X. ; 24:12, s. 5417-5429
  • Tidskriftsartikel (refereegranskat)abstract
    • Carboxylated cellulose nanofibers (CNFs), having an average width of 7 nm and thickness of 1.5 nm, were produced by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation method. The fiber cross-sectional dimensions were determined using small-angle X-ray scattering (SAXS), transmission electron microscopy and atomic force microscopy techniques, where the rheological properties under different concentration and ionic strength were also investigated. The formation of hydrogel was evidenced by increasing the CNF concentration or ionic strength of the solvent (water), while the gel structure in ion-induced CNF hydrogels was found to be relatively inhomogeneous. The gelation behavior was closely related to the segmental aggregation of charged CNF, which could be quantitatively characterized by the correlation length (Ο) from the low-angle scattering profile and the scattering invariant (Q) in SAXS.
  •  
3.
  • Phua, Yu Yu, et al. (författare)
  • Characterizing Hydrated Sulfates and Altered Phases in Jezero Crater Fan and Floor Geologic Units With SHERLOC on Mars 2020
  • 2024
  • Ingår i: Journal of Geophysical Research - Planets. - : American Geophysical Union (AGU). - 2169-9097 .- 2169-9100. ; 129:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mars 2020 Perseverance rover has explored fluvio-lacustrine sedimentary rocks within Jezero crater. Prior work showed that igneous crater floor Séítah and Máaz formations have mafic mineralogy with alteration phases that indicate multiple episodes of aqueous alteration. In this work, we extend the analyses of hydration to targets in the Jezero western fan delta, using data from the SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) Raman spectrometer. Spectral features, for example, sulfate and hydration peak positions and shapes, vary within, and across the crater floor and western fan. The proportion of targets with hydration associated with sulfates was approximately equal in the crater floor and the western fan. All hydrated targets in the crater floor and upper fan showed bimodal hydration peaks at ∼3,200 and ∼3,400 cm−1. The sulfate symmetric stretch at ∼1,000 cm−1 coupled with a hydration peak at ∼3,400 cm−1 indicate that MgSO4·nH2O (2 < n ≤ 5) is a likely hydration carrier phase in all units, perhaps paired with low-hydration (n ≤ 1) amorphous Mg-sulfates, indicated by the ∼3,200 cm−1 peak. Low-hydration MgSO4·nH2O (n = 1–2) are more prevalent in the fan, and hydrated targets in the fan front only had one peak at ∼3,400 cm−1. While anhydrite co-occurs with hydrated Mg-sulfates in the crater floor and fan front, hydrated Ca-sulfates are observed instead at the top of the upper fan. Collectively, the data imply aqueous deposition of sediments with formation of salts from high ionic strength fluids and subsequent aridity to preserve the observed hydration states.
  •  
4.
  • Sharma, S., et al. (författare)
  • Diverse organic-mineral associations in Jezero crater, Mars
  • 2023
  • Ingår i: Nature. - : Nature Research. - 0028-0836 .- 1476-4687. ; 619:7971, s. 724-732
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence and distribution of preserved organic matter on the surface of Mars can provide key information about the Martian carbon cycle and the potential of the planet to host life throughout its history. Several types of organic molecules have been previously detected in Martian meteorites1 and at Gale crater, Mars2–4. Evaluating the diversity and detectability of organic matter elsewhere on Mars is important for understanding the extent and diversity of Martian surface processes and the potential availability of carbon sources1,5,6. Here we report the detection of Raman and fluorescence spectra consistent with several species of aromatic organic molecules in the Máaz and Séítah formations within the Crater Floor sequences of Jezero crater, Mars. We report specific fluorescence-mineral associations consistent with many classes of organic molecules occurring in different spatial patterns within these compositionally distinct formations, potentially indicating different fates of carbon across environments. Our findings suggest there may be a diversity of aromatic molecules prevalent on the Martian surface, and these materials persist despite exposure to surface conditions. These potential organic molecules are largely found within minerals linked to aqueous processes, indicating that these processes may have had a key role in organic synthesis, transport or preservation. © 2023, The Author(s).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy