SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sharpe Ted) "

Sökning: WFRF:(Sharpe Ted)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amemiya, Chris T., et al. (författare)
  • The African coelacanth genome provides insights into tetrapod evolution
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 496:7445, s. 311-316
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.
  •  
2.
  • Barretina, Jordi, et al. (författare)
  • Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy.
  • 2010
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 42:8, s. 715-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Soft-tissue sarcomas, which result in approximately 10,700 diagnoses and 3,800 deaths per year in the United States, show remarkable histologic diversity, with more than 50 recognized subtypes. However, knowledge of their genomic alterations is limited. We describe an integrative analysis of DNA sequence, copy number and mRNA expression in 207 samples encompassing seven major subtypes. Frequently mutated genes included TP53 (17% of pleomorphic liposarcomas), NF1 (10.5% of myxofibrosarcomas and 8% of pleomorphic liposarcomas) and PIK3CA (18% of myxoid/round-cell liposarcomas, or MRCs). PIK3CA mutations in MRCs were associated with Akt activation and poor clinical outcomes. In myxofibrosarcomas and pleomorphic liposarcomas, we found both point mutations and genomic deletions affecting the tumor suppressor NF1. Finally, we found that short hairpin RNA (shRNA)-based knockdown of several genes amplified in dedifferentiated liposarcoma, including CDK4 and YEATS4, decreased cell proliferation. Our study yields a detailed map of molecular alterations across diverse sarcoma subtypes and suggests potential subtype-specific targets for therapy.
  •  
3.
  • Berglund, Jonas, et al. (författare)
  • Novel origins of copy number variation in the dog genome
  • 2012
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X .- 1474-7596. ; 13:8, s. R73-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Copy number variants (CNVs) account for substantial variation between genomes and are a major source of normal and pathogenic phenotypic differences. The dog is an ideal model to investigate mutational mechanisms that generate CNVs as its genome lacks a functional ortholog of the PRDM9 gene implicated in recombination and CNV formation in humans. Here we comprehensively assay CNVs using high-density array comparative genomic hybridization in 50 dogs from 17 dog breeds and 3 gray wolves. RESULTS: We use a stringent new method to identify a total of 430 high-confidence CNV loci, which range in size from 9 kb to 1.6 Mb and span 26.4 Mb, or 1.08%, of the assayed dog genome, overlapping 413 annotated genes. Of CNVs observed in each breed, 98% are also observed in multiple breeds. CNVs predicted to disrupt gene function are significantly less common than expected by chance. We identify a significant overrepresentation of peaks of GC content, previously shown to be enriched in dog recombination hotspots, in the vicinity of CNV breakpoints. CONCLUSIONS: A number of the CNVs identified by this study are candidates for generating breed-specific phenotypes. Purifying selection seems to be a major factor shaping structural variation in the dog genome, suggesting that many CNVs are deleterious. Localized peaks of GC content appear to be novel sites of CNV formation in the dog genome by non-allelic homologous recombination, potentially activated by the loss of PRDM9. These sequence features may have driven genome instability and chromosomal rearrangements throughout canid evolution.
  •  
4.
  • Brawand, David, et al. (författare)
  • The genomic substrate for adaptive radiation in African cichlid fish
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 513:7518, s. 375-381
  • Tidskriftsartikel (refereegranskat)abstract
    • Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand themolecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.
  •  
5.
  • Haas, Brian J., et al. (författare)
  • Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans
  • 2009
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 461:7262, s. 393-398
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement(1). To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population(1). Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion(2). Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars(3,4). Here we report the sequence of the P. infestans genome, which at similar to 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for similar to 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
  •  
6.
  • Mikkelsen, Tarjei S, et al. (författare)
  • Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7141, s. 167-177
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the first metatherian ('marsupial') species to be sequenced, the opossum provides a unique perspective on the organization and evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories about genome evolution and function, including a strong influence of biased gene conversion on nucleotide sequence composition, and a relationship between chromosomal characteristics and X chromosome inactivation. Comparison of opossum and eutherian genomes also reveals a sharp difference in evolutionary innovation between protein-coding and non-coding functional elements. True innovation in protein-coding genes seems to be relatively rare, with lineage-specific differences being largely due to diversification and rapid turnover in gene families involved in environmental interactions. In contrast, about 20% of eutherian conserved non-coding elements (CNEs) are recent inventions that postdate the divergence of Eutheria and Metatheria. A substantial proportion of these eutherian-specific CNEs arose from sequence inserted by transposable elements, pointing to transposons as a major creative force in the evolution of mammalian gene regulation.
  •  
7.
  • Rubin, Carl-Johan, et al. (författare)
  • Whole genome resequencing reveals loci under selection during chicken domestication
  • 2010
  • Ingår i: Nature. - London : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 464:7288, s. 587-591
  • Tidskriftsartikel (refereegranskat)abstract
    • Domestic animals are excellent models for genetic studies of phenotypic evolution. They have evolved genetic adaptations to a new environment, the farm, and have been subjected to strong human-driven selection leading to remarkable phenotypic changes in morphology, physiology and behaviour. Identifying the genetic changes underlying these developments provides new insight into general mechanisms by which genetic variation shapes phenotypic diversity. Here we describe the use of massively parallel sequencing to identify selective sweeps of favourable alleles and candidate mutations that have had a prominent role in the domestication of chickens (Gallus gallus domesticus) and their subsequent specialization into broiler (meat-producing) and layer (egg-producing) chickens. We have generated 44.5-fold coverage of the chicken genome using pools of genomic DNA representing eight different populations of domestic chickens as well as red jungle fowl (Gallus gallus), the major wild ancestor. We report more than 7,000,000 single nucleotide polymorphisms, almost 1,300 deletions and a number of putative selective sweeps. One of the most striking selective sweeps found in all domestic chickens occurred at the locus for thyroid stimulating hormone receptor (TSHR), which has a pivotal role in metabolic regulation and photoperiod control of reproduction in vertebrates. Several of the selective sweeps detected in broilers overlapped genes associated with growth, appetite and metabolic regulation. We found little evidence that selection for loss-of-function mutations had a prominent role in chicken domestication, but we detected two deletions in coding sequences that we suggest are functionally important. This study has direct application to animal breeding and enhances the importance of the domestic chicken as a model organism for biomedical research.
  •  
8.
  • Zody, Michael, 1968-, et al. (författare)
  • Analysis of the DNA sequence and duplication history of human chromosome 15
  • 2006
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 440:7084, s. 671-675
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we present a finished sequence of human chromosome 15, together with a high-quality gene catalogue. As chromosome 15 is one of seven human chromosomes with a high rate of segmental duplication, we have carried out a detailed analysis of the duplication structure of the chromosome. Segmental duplication in chromosome 15 are largely clustered in two regions, on proximal and distal 15q; the proximal region is notable because recombination among the segmental duplications can result in deletions causing Prader-Willi and Angelman syndromes. Sequence analysis shows that the proximal and distal regions of 15q share extensive ancient similarity. Using a simple approach, we have been able to reconstruct many of the events by which the current duplication structure arose. We find that most of the intrachromosomal duplications seem to share a common ancestry. Finally, we demonstrate that some remaining gaps in the genome sequence are probably due to structural polymorphisms between haplotypes; this may explain a significant fraction of the gaps remaining in the human genome.
  •  
9.
  • Zody, Michael, 1968-, et al. (författare)
  • DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage
  • 2006
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 440:7087, s. 1045-1049
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy