SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shcherbina A) ;pers:(Lindqvist A)"

Sökning: WFRF:(Shcherbina A) > Lindqvist A

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chriett, S., et al. (författare)
  • SCRT1 is a novel beta cell transcription factor with insulin regulatory properties
  • 2021
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 521
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we show that scratch family transcriptional repressor 1 (SCRT1), a zinc finger transcriptional regulator, is a novel regulator of beta cell function. SCRT1 was found to be expressed in beta cells in rodent and human islets. In human islets, expression of SCRT1 correlated with insulin secretion capacity and the expression of the insulin (INS) gene. Furthermore, SCRT1 mRNA expression was lower in beta cells from T2D patients. siRNA-mediated Scrt1 silencing in INS-1832/13 cells, mouse- and human islets resulted in impaired glucose-stimulated insulin secretion and decreased expression of the insulin gene. This is most likely due to binding of SCRT1 to E-boxes of the Ins1 gene as shown with ChIP. Scrt1 silencing also reduced the expression of several key beta cell transcription factors. Moreover, Scrt1 mRNA expression was reduced by glucose and SCRT1 protein was found to translocate between the nucleus and the cytosol in a glucose-dependent fashion in INS-1832/13 cells as well as in a rodent model of T2D. SCRT1 was also regulated by a GSK3β-dependent SCRT1-serine phosphorylation. Taken together, SCRT1 is a novel beta cell transcription factor that regulates insulin secretion and is affected in T2D.
  •  
2.
  • Lindqvist, A, et al. (författare)
  • Ghrelin suppresses insulin secretion in human islets and type 2 diabetes patients have diminished islet ghrelin cell number and lower plasma ghrelin levels
  • 2020
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 511
  • Tidskriftsartikel (refereegranskat)abstract
    • It is not known how ghrelin affects insulin secretion in human islets from patients with type 2 diabetes (T2D) or whether islet ghrelin expression or circulating ghrelin levels are altered in T2D. Here we sought out to identify the effect of ghrelin on insulin secretion in human islets and the impact of T2D on circulating ghrelin levels and on islet ghrelin cells. The effect of ghrelin on insulin secretion was assessed in human T2D and non-T2D islets. Ghrelin expression was assessed with RNA-sequencing (n = 191) and immunohistochemistry (n = 21). Plasma ghrelin was measured with ELISA in 40 T2D and 40 non-T2D subjects. Ghrelin exerted a glucose-dependent insulin-suppressing effect in islets from both T2D and non-T2D donors. Compared with non-T2D donors, T2D donors had reduced ghrelin mRNA expression and 75% less islet ghrelin cells, and ghrelin mRNA expression correlated negatively with HbA1c. T2D subjects had 25% lower fasting plasma ghrelin levels than matched controls. Thus, ghrelin has direct insulin-suppressing effects in human islets and T2D patients have lower fasting ghrelin levels, likely as a result of reduced number of islet ghrelin cells. These findings support inhibition of ghrelin signaling as a potential therapeutic avenue for stimulation of insulin secretion in T2D patients.
  •  
3.
  •  
4.
  • Shcherbina, L., et al. (författare)
  • Intestinal CART is a regulator of GIP and GLP-1 secretion and expression
  • 2018
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207. ; 476, s. 8-16
  • Tidskriftsartikel (refereegranskat)abstract
    • Impaired incretin effect is a culprit in Type 2 Diabetes. Cocaine- and amphetamine-regulated transcript (CART) is a regulatory peptide controlling pancreatic islet hormone secretion and beta-cell survival. Here we studied the potential expression of CART in enteroendocrine cells and examined the role of CART as a regulator of incretin secretion and expression. CART expression was found in glucose-dependent insulinotropic polypeptide (GIP)-producing K-cells and glucagon-like peptide-1 (GLP-1)-producing L-cells in human duodenum and jejunum and circulating CART levels were increased 60 min after a meal in humans. CART expression was increased by fatty acids and GIP, but unaffected by glucose in GLUTag and STC-1 cells. Exogenous CART had no effect on GIP and GLP-1 expression and secretion in GLUTag or STC-1 cells, but siRNA-mediated silencing of CART reduced GLP-1 expression and secretion. Furthermore, acute intravenous administration of CART increased GIP and GLP-1 secretion during an oral glucose-tolerance test in mice. We conclude that CART is a novel constituent of human K- and L-cells with stimulatory actions on incretin secretion and that interfering with the CART system may be a therapeutic avenue for T2D.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy