SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sherman Jodi) "

Sökning: WFRF:(Sherman Jodi)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Bel, Thomas, et al. (författare)
  • Automated quantification of levels of breast terminal duct lobular (TDLU) involution using deep learning
  • 2022
  • Ingår i: npj Breast Cancer. - : Nature Portfolio. - 2374-4677. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Convolutional neural networks (CNNs) offer the potential to generate comprehensive quantitative analysis of histologic features. Diagnostic reporting of benign breast disease (BBD) biopsies is usually limited to subjective assessment of the most severe lesion in a sample, while ignoring the vast majority of tissue features, including involution of background terminal duct lobular units (TDLUs), the structures from which breast cancers arise. Studies indicate that increased levels of age-related TDLU involution in BBD biopsies predict lower breast cancer risk, and therefore its assessment may have potential value in risk assessment and management. However, assessment of TDLU involution is time-consuming and difficult to standardize and quantitate. Accordingly, we developed a CNN to enable automated quantitative measurement of TDLU involution and tested its performance in 174 specimens selected from the pathology archives at Mayo Clinic, Rochester, MN. The CNN was trained and tested on a subset of 33 biopsies, delineating important tissue types. Nine quantitative features were extracted from delineated TDLU regions. Our CNN reached an overall dice-score of 0.871 (+/- 0.049) for tissue classes versus reference standard annotation. Consensus of four reviewers scoring 705 images for TDLU involution demonstrated substantial agreement with the CNN method (unweighted kappa = 0.747 +/- 0.01). Quantitative involution measures showed anticipated associations with BBD histology, breast cancer risk, breast density, menopausal status, and breast cancer risk prediction scores (p < 0.05). Our work demonstrates the potential to improve risk prediction for women with BBD biopsies by applying CNN approaches to generate automated quantitative evaluation of TDLU involution.
  •  
2.
  • Mercan, Caner, et al. (författare)
  • Deep learning for fully-automated nuclear pleomorphism scoring in breast cancer
  • 2022
  • Ingår i: npj Breast Cancer. - : Nature Portfolio. - 2374-4677. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • To guide the choice of treatment, every new breast cancer is assessed for aggressiveness (i.e., graded) by an experienced histopathologist. Typically, this tumor grade consists of three components, one of which is the nuclear pleomorphism score (the extent of abnormalities in the overall appearance of tumor nuclei). The degree of nuclear pleomorphism is subjectively classified from 1 to 3, where a score of 1 most closely resembles epithelial cells of normal breast epithelium and 3 shows the greatest abnormalities. Establishing numerical criteria for grading nuclear pleomorphism is challenging, and inter-observer agreement is poor. Therefore, we studied the use of deep learning to develop fully automated nuclear pleomorphism scoring in breast cancer. The reference standard used for training the algorithm consisted of the collective knowledge of an international panel of 10 pathologists on a curated set of regions of interest covering the entire spectrum of tumor morphology in breast cancer. To fully exploit the information provided by the pathologists, a first-of-its-kind deep regression model was trained to yield a continuous scoring rather than limiting the pleomorphism scoring to the standard three-tiered system. Our approach preserves the continuum of nuclear pleomorphism without necessitating a large data set with explicit annotations of tumor nuclei. Once translated to the traditional system, our approach achieves top pathologist-level performance in multiple experiments on regions of interest and whole-slide images, compared to a panel of 10 and 4 pathologists, respectively.
  •  
3.
  • Ogony, Joshua, et al. (författare)
  • Towards defining morphologic parameters of normal parous and nulliparous breast tissues by artificial intelligence
  • 2022
  • Ingår i: Breast Cancer Research. - : BMC. - 1465-5411 .- 1465-542X. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Breast terminal duct lobular units (TDLUs), the source of most breast cancer (BC) precursors, are shaped by age-related involution, a gradual process, and postpartum involution (PPI), a dramatic inflammatory process that restores baseline microanatomy after weaning. Dysregulated PPI is implicated in the pathogenesis of postpartum BCs. We propose that assessment of TDLUs in the postpartum period may have value in risk estimation, but characteristics of these tissues in relation to epidemiological factors are incompletely described. Methods Using validated Artificial Intelligence and morphometric methods, we analyzed digitized images of tissue sections of normal breast tissues stained with hematoxylin and eosin from donors <= 45 years from the Komen Tissue Bank (180 parous and 545 nulliparous). Metrics assessed by AI, included: TDLU count; adipose tissue fraction; mean acini count/TDLU; mean dilated acini; mean average acini area; mean "capillary" area; mean epithelial area; mean ratio of epithelial area versus intralobular stroma; mean mononuclear cell count (surrogate of immune cells); mean fat area proximate to TDLUs and TDLU area. We compared epidemiologic characteristics collected via questionnaire by parity status and race, using a Wilcoxon rank sum test or Fishers exact test. Histologic features were compared between nulliparous and parous women (overall and by time between last birth and donation [recent birth: <= 5 years versus remote birth: > 5 years]) using multivariable regression models. Results Normal breast tissues of parous women contained significantly higher TDLU counts and acini counts, more frequent dilated acini, higher mononuclear cell counts in TDLUs and smaller acini area per TDLU than nulliparas (all multivariable analyses p < 0.001). Differences in TDLU counts and average acini size persisted for > 5 years postpartum, whereas increases in immune cells were most marked <= 5 years of a birth. Relationships were suggestively modified by several other factors, including demographic and reproductive characteristics, ethanol consumption and breastfeeding duration. Conclusions Our study identified sustained expansion of TDLU numbers and reduced average acini area among parous versus nulliparous women and notable increases in immune responses within five years following childbirth. Further, we show that quantitative characteristics of normal breast samples vary with demographic features and BC risk factors.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Sherman, Mark E., et al. (författare)
  • Serum hormone levels and normal breast histology among premenopausal women
  • 2022
  • Ingår i: Breast Cancer Research and Treatment. - New York, NY, United States : Springer. - 0167-6806 .- 1573-7217. ; 194, s. 149-158
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose Breast terminal duct lobular units (TDLUs) are the main source of breast cancer (BC) precursors. Higher serum concentrations of hormones and growth factors have been linked to increased TDLU numbers and to elevated BC risk, with variable effects by menopausal status. We assessed associations of circulating factors with breast histology among premenopausal women using artificial intelligence (AI) and preliminarily tested whether parity modifies associations.Methods Pathology AI analysis was performed on 316 digital images of H&E-stained sections of normal breast tissues from Komen Tissue Bank donors ages ≤ 45 years to assess 11 quantitative metrics. Associations of circulating factors with AI metrics were assessed using regression analyses, with inclusion of interaction terms to assess effect modification.Results Higher prolactin levels were related to larger TDLU area (p<0.001) and increased presence of adipose tissue proximate to TDLUs (p<0.001), with less significant positive associations for acini counts (p = 0.012), dilated acini (p = 0.043), capillary area (p = 0.014), epithelial area (p = 0.007), and mononuclear cell counts (p = 0.017). Testosterone levels were associated with increased TDLU counts (p<0.001), irrespective of parity, but associations differed by adipose tissue content. AI data for TDLU counts generally agreed with prior visual assessments.Conclusion Among premenopausal women, serum hormone levels linked to BC risk were also associated with quantitative features of normal breast tissue. These relationships were suggestively modified by parity status and tissue composition. We conclude that the microanatomic features of normal breast tissue may represent a marker of BC risk.
  •  
8.
  •  
9.
  • Watts, Nick, et al. (författare)
  • The 2020 report of The Lancet Countdown on health and climate change : responding to converging crises
  • 2021
  • Ingår i: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 397:10269, s. 129-170
  • Forskningsöversikt (refereegranskat)abstract
    • The Lancet Countdown is an international collaboration established to provide an independent, global monitoring system dedicated to tracking the emerging health profile of the changing climate.The 2020 report presents 43 indicators across five sections: climate change impacts, exposures, and vulnerabilities; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. This report represents the findings and consensus of the 35 leading academic institutions and UN agencies that make up The Lancet Countdown, and draws on the expertise of climate scientists, geographers, engineers, experts in energy, food, and transport, economists, social, and political scientists, data scientists, public health professionals, and doctors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy