SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sim K) ;lar1:(cth)"

Sökning: WFRF:(Sim K) > Chalmers tekniska högskola

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bjorn, A., et al. (författare)
  • Review of life-cycle based methods for absolute environmental sustainability assessment and their applications
  • 2020
  • Ingår i: Environmental Research Letters. - : IOP Publishing Ltd. - 1748-9326 .- 1748-9318. ; 15:8
  • Tidskriftsartikel (refereegranskat)abstract
    • In many regions and at the planetary scale, human pressures on the environment exceed levels that natural systems can sustain. These pressures are caused by networks of human activities, which often extend across countries and continents due to global trade. This has led to an increasing requirement for methods that enable absolute environmental sustainability assessment (AESA) of anthropogenic systems and which have a basis in life cycle assessment (LCA). Such methods enable the comparison of environmental impacts of products, companies, nations, etc, with an assigned share of environmental carrying capacity for various impact categories. This study is the first systematic review of LCA-based AESA methods and their applications. After developing a framework for LCA-based AESA methods, we identified 45 relevant studies through an initial survey, database searches and citation analysis. We characterized these studies according to their intended application, impact categories, basis of carrying capacity estimates, spatial differentiation of environmental model and principles for assigning carrying capacity. We then characterized all method applications and synthesized their results. Based on this assessment, we present recommendations to practitioners on the selection and use of existing LCA-based AESA methods, as well as ways to perform assessments and communicate results to decision-makers. Furthermore, we identify future research priorities intended to extend coverage of all components of the proposed method framework, improve modeling and increase the applicability of methods. © 2020 The Author(s). 
  •  
2.
  • Flechard, Chris R., et al. (författare)
  • Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling
  • 2020
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 17:6, s. 1583-1620
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of atmospheric reactive nitrogen (N-r) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC/dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of N-r deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet N-r deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and N-r inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes; soil NO3- leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BAS-FOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from -70 to 826 gCm(-2) yr(-1) at total wet + dry inorganic N-r deposition rates (N-dep) of 0.3 to 4.3 gNm(-2) yr(-1) and from -4 to 361 g Cm-2 yr(-1) at N-dep rates of 0.1 to 3.1 gNm(-2) yr(-1) in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated N-dep where N-r leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N-2 losses by denitrification. Nitrogen losses in the form of NO, N2O and especially NO3- were on average 27%(range 6 %-54 %) of N-dep at sites with N-dep < 1 gNm(-2) yr(-1) versus 65% (range 35 %-85 %) for N-dep > 3 gNm(-2) yr(-1). Such large levels of N-r loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with N-r deposition up to 2-2.5 gNm(-2) yr(-1), with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP/GPP ratio). At elevated N-dep levels (> 2.5 gNm(-2) yr(-1)), where inorganic N-r losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate N-dep levels was partly the result of geographical cross-correlations between N-dep and climate, indicating that the actual mean dC/dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. N-dep.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy