SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Simon A) ;lar1:(hh)"

Sökning: WFRF:(Simon A) > Högskolan i Halmstad

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Jones, D. L., et al. (författare)
  • High dynamic range VLBI observations of NGC 6251
  • 1986
  • Ingår i: Astrophysical Journal. - Philadelphia, United States : Institute of Physics Publishing, Inc. - 0004-637X .- 1538-4357. ; 305:2, s. 684-697
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • de Vries, Franciska T., et al. (författare)
  • Soil food web properties explain ecosystem services across European land use systems
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences. - Washington, DC : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 110:35, s. 14296-14301
  • Tidskriftsartikel (refereegranskat)abstract
    • Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.
  •  
4.
  • Tsiafouli, Maria A., et al. (författare)
  • Intensive agriculture reduces soil biodiversity across Europe
  • 2015
  • Ingår i: Global Change Biology. - West Sussex : Wiley. - 1354-1013 .- 1365-2486. ; 21:2, s. 973-985
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems.
  •  
5.
  • Ursby, Thomas, et al. (författare)
  • BioMAX the first macromolecular crystallography beamline at MAX IV Laboratory
  • 2020
  • Ingår i: Journal of Synchrotron Radiation. - Chichester : Wiley-Blackwell. - 0909-0495 .- 1600-5775. ; 27, s. 1415-1429
  • Tidskriftsartikel (refereegranskat)abstract
    • BioMAX is the first macromolecular crystallography beamline at the MAX IV Laboratory 3 GeV storage ring, which is the first operational multi-bend achromat storage ring. Due to the low-emittance storage ring, BioMAX has a parallel, high-intensity X-ray beam, even when focused down to 20 μm × 5 μm using the bendable focusing mirrors. The beam is tunable in the energy range 5-25 keV using the in-vacuum undulator and the horizontally deflecting double-crystal monochromator. BioMAX is equipped with an MD3 diffractometer, an ISARA high-capacity sample changer and an EIGER 16M hybrid pixel detector. Data collection at BioMAX is controlled using the newly developed MXCuBE3 graphical user interface, and sample tracking is handled by ISPyB. The computing infrastructure includes data storage and processing both at MAX IV and the Lund University supercomputing center LUNARC. With state-of-the-art instrumentation, a high degree of automation, a user-friendly control system interface and remote operation, BioMAX provides an excellent facility for most macromolecular crystallography experiments. Serial crystallography using either a high-viscosity extruder injector or the MD3 as a fixed-target scanner is already implemented. The serial crystallography activities at MAX IV Laboratory will be further developed at the microfocus beamline MicroMAX, when it comes into operation in 2022. MicroMAX will have a 1 μm × 1 μm beam focus and a flux up to 1015 photons s with main applications in serial crystallography, room-temperature structure determinations and time-resolved experiments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (5)
Typ av innehåll
refereegranskat (5)
Författare/redaktör
Birkhofer, Klaus (2)
Hedlund, Katarina (2)
Kelly, Daniel (1)
Bengtsson-Palme, Joh ... (1)
Nilsson, Henrik (1)
Kelly, Ryan (1)
visa fler...
Li, Ying (1)
Moore, Matthew D. (1)
Liu, Fang (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Lundin, Magnus (1)
Zhang, Kai (1)
Khatlani, T (1)
Kahan, Thomas (1)
Walker, R. C. (1)
Sörelius, Karl, 1981 ... (1)
Batra, Jyotsna (1)
Roobol, Monique J (1)
Backman, Lars (1)
Yan, Hong (1)
Lorkowski, Stefan (1)
Thrift, Amanda G. (1)
Zhang, Wei (1)
Hammerschmidt, Sven (1)
Patil, Chandrashekha ... (1)
Wang, Jun (1)
Pollesello, Piero (1)
Conesa, Ana (1)
Zhang, Weijia (1)
Åhnberg, Karl (1)
Li, Jian (1)
Marinello, Francesco (1)
Frilander, Mikko J. (1)
Wei, Pan (1)
Badie, Christophe (1)
Zhao, Jing (1)
Li, You (1)
Haghighat, Vahid (1)
Bansal, Abhisheka (1)
Rahman, Proton (1)
Bååth, L.B. 1948- (1)
Parchi, Piero (1)
Booth, R.S. (1)
Polz, Martin (1)
Cerenius, Yngve (1)
Kloos, Marco (1)
Ijzerman, Adriaan P. (1)
visa färre...
Lärosäte
Lunds universitet (4)
Sveriges Lantbruksuniversitet (2)
Göteborgs universitet (1)
Uppsala universitet (1)
Stockholms universitet (1)
visa fler...
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)
Lantbruksvetenskap (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy