SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Simrén Joel 1996) ;lar1:(gu)"

Sökning: WFRF:(Simrén Joel 1996) > Göteborgs universitet

  • Resultat 1-10 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alawode, Deborah O T, et al. (författare)
  • Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer's disease.
  • 2021
  • Ingår i: Journal of internal medicine. - : Wiley. - 1365-2796 .- 0954-6820. ; 290:3, s. 583-601
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is increasingly prevalent worldwide, and disease-modifying treatments may soon be at hand; hence now, more than ever, there is a need to develop techniques that allow earlier and more secure diagnosis. Current biomarker-based guidelines for AD diagnosis, which have replaced the historical symptom-based guidelines, rely heavily on neuroimaging and cerebrospinal fluid (CSF) sampling. Whilst these have greatly improved the diagnostic accuracy of AD pathophysiology, they are less practical for application in primary care, population-based and epidemiological settings, or where resources are limited. In contrast, blood is a more accessible and cost-effective source of biomarkers in AD. In this review paper, using the recently proposed amyloid, tau and neurodegeneration [AT(N)] criteria as a framework towards a biological definition of AD, we discuss recent advances in biofluid-based biomarkers, with a particular emphasis on those with potential to be translated into blood-based biomarkers. We provide an overview of the research conducted both in CSF and in blood to draw conclusions on biomarkers that show promise. Given the evidence collated in this review, plasma neurofilament light chain (N), and phosphorylated tau (p-tau; T) show particular potential for translation into clinical practice. However, p-tau requires more comparisons to be conducted between its various epitopes before conclusions can be made as to which one most robustly differentiates AD from non-AD dementias. Plasma amyloid beta (A) would prove invaluable as an early screening modality, but it requires very precise tests and robust pre-analytical protocols.
  •  
2.
  • Ashton, Nicholas J., et al. (författare)
  • Effects of pre-analytical procedures on blood biomarkers for Alzheimer's pathophysiology, glial activation, and neurodegeneration.
  • 2021
  • Ingår i: Alzheimer's & dementia (Amsterdam, Netherlands). - : Wiley. - 2352-8729. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We tested how tube types (ethylenediaminetetraacetic acid [EDTA], serum, lithium heparin [LiHep], and citrate) and freeze-thaw cycles affect levels of blood biomarkers for Alzheimer's disease (AD) pathophysiology, glial activation, and neuronal injury.Amyloid beta (Aβ)42, Aβ40, phosphorylated tau181 (p-tau181), glial fibrillary acidic protein, total tau (t-tau), neurofilament light, and phosphorylated neurofilament heavy protein were measured using single molecule arrays.LiHep demonstrated the highest mean value for all biomarkers. Tube types were highly correlated for most biomarkers (r > 0.95) but gave significantly different absolute concentrations. Weaker correlations between tube types were found for Aβ42/40 (r = 0.63-0.86) and serum t-tau (r = 0.46-0.64). Freeze-thaw cycles highly influenced levels of serum Aβ and t-tau (P < .0001), and minor decreases in EDTA Aβ40 and EDTA p-tau181 were found after freeze-thaw cycle 4 (P < .05).The same tube type should be used in research studies on blood biomarkers. Individual concentration cut-offs are needed for each tube type in all tested biomarkers despite being highly correlated. Serum should be avoided for Aβ42, Aβ40, and t-tau. Freeze-thaw cycles > 3 should be avoided for p-tau181.
  •  
3.
  • Balusu, Sriram, et al. (författare)
  • MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer's disease.
  • 2023
  • Ingår i: Science (New York, N.Y.). - 1095-9203. ; 381:6663, s. 1176-1182
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal cell loss is a defining feature of Alzheimer's disease (AD), but the underlying mechanisms remain unclear. We xenografted human or mouse neurons into the brain of a mouse model of AD. Only human neurons displayed tangles, Gallyas silver staining, granulovacuolar neurodegeneration (GVD), phosphorylated tau blood biomarkers, and considerable neuronal cell loss. The long noncoding RNA MEG3 was strongly up-regulated in human neurons. This neuron-specific long noncoding RNA is also up-regulated in AD patients. MEG3 expression alone was sufficient to induce necroptosis in human neurons in vitro. Down-regulation of MEG3 and inhibition of necroptosis using pharmacological or genetic manipulation of receptor-interacting protein kinase 1 (RIPK1), RIPK3, or mixed lineage kinase domain-like protein (MLKL) rescued neuronal cell loss in xenografted human neurons. This model suggests potential therapeutic approaches for AD and reveals a human-specific vulnerability to AD.
  •  
4.
  • Bark, Lovisa, et al. (författare)
  • Central nervous system biomarkers GFAp and NfL associate with post-acute cognitive impairment and fatigue following critical COVID-19.
  • 2023
  • Ingår i: Scientific reports. - : Springer Nature. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A high proportion of patients with coronavirus disease 2019 (COVID-19) experience post-acute COVID-19, including neuropsychiatric symptoms. Objective signs of central nervous system (CNS) damage can be investigated using CNS biomarkers such as glial fibrillary acidic protein (GFAp), neurofilament light chain (NfL) and total tau (t-tau). We have examined whether CNS biomarkers can predict fatigue and cognitive impairment 3-6 months after discharge from the intensive care unit (ICU) in critically ill COVID-19 patients. Fifty-seven COVID-19 patients admitted to the ICU were included with analysis of CNS biomarkers in blood at the ICU and at follow up. Cognitive dysfunction and fatigue were assessed with the Montreal Cognitive Assessment (MoCA) and the Multidimensional Fatigue inventory (MFI-20). Elevated GFAp at follow-up 3-6 months after ICU discharge was associated to the development of mild cognitive dysfunction (p = 0.01), especially in women (p = 0.005). Patients who experienced different dimensions of fatigue at follow-up had significantly lower GFAp in both the ICU and at follow-up, specifically in general fatigue (p = 0.009), physical fatigue (p = 0.004), mental fatigue (p = 0.001), and reduced motivation (p = 0.001). Women showed a more pronounced decrease in GFAp compared to men, except for in mental fatigue where men showed a more pronounced GFAp decrease compared to women. NfL concentration at follow-up was lower in patients who experienced reduced motivation (p = 0.004). Our findings suggest that GFAp and NfL are associated with neuropsychiatric outcome after critical COVID-19.Trial registration The study was registered à priori (clinicaltrials.gov: NCT04316884 registered on 2020-03-13 and NCT04474249 registered on 2020-06-29).
  •  
5.
  • Benussi, Alberto, et al. (författare)
  • Diagnostic and prognostic value of serum NfL and p-Tau181 in frontotemporal lobar degeneration.
  • 2020
  • Ingår i: Journal of neurology, neurosurgery, and psychiatry. - : BMJ. - 1468-330X .- 0022-3050. ; 91:9, s. 960-967
  • Tidskriftsartikel (refereegranskat)abstract
    • To assess the diagnostic and prognostic value of serum neurofilament light (NfL) and serum phospho-Tau181 (p-Tau181) in a large cohort of patients with frontotemporal lobar degeneration (FTLD).In this retrospective study, performed on 417 participants, we analysed serum NfL and p-Tau181 concentrations with an ultrasensitive single molecule array (Simoa) approach. We assessed the diagnostic values of serum biomarkers in the differential diagnosis between FTLD, Alzheimer's disease (AD) and healthy ageing; their role as markers of disease severity assessing the correlation with clinical variables, cross-sectional brain imaging and neurophysiological data; their role as prognostic markers, considering their ability to predict survival probability in FTLD.We observed significantly higher levels of serum NfL in patients with FTLD syndromes, compared with healthy controls, and lower levels of p-Tau181 compared with patients with AD. Serum NfL concentrations showed a high accuracy in discriminating between FTLD and healthy controls (area under the curve (AUC): 0.86, p<0.001), while serum p-Tau181 showed high accuracy in differentiating FTLD from patients with AD (AUC: 0.93, p<0.001). In FTLD, serum NfL levels correlated with measures of cognitive function, disease severity and behavioural disturbances and were associated with frontotemporal atrophy and indirect measures of GABAergic deficit. Moreover, serum NfL concentrations were identified as the best predictors of survival probability.The assessment of serum NfL and p-Tau181 may provide a comprehensive view of FTLD, aiding in the differential diagnosis, in staging disease severity and in defining survival probability.
  •  
6.
  • Bjursten, Sara, et al. (författare)
  • Concentrations of S100B and neurofilament light chain in blood as biomarkers for checkpoint inhibitor-induced CNS inflammation
  • 2024
  • Ingår i: EBIOMEDICINE. - 2352-3964. ; 100
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Cancer treatment with immune checkpoint inhibition (ICI) can cause immune -related adverse events in the central nervous system (CNS irAE). There are no blood biomarkers to detect CNS irAE. We investigated if concentrations of S100 -calcium -binding protein B (S100B) and neurofilament light chain (NfL) in blood can be used as biomarkers for CNS irAE and assessed the incidence of CNS irAE in a cohort of ICI -treated patients. Methods In this single -centre, retrospective cohort study, we examined medical records and laboratory data of 197 consecutive patients treated with combined CTLA-4 and PD -1 inhibition (ipilimumab; ipi + nivolumab; nivo) for metastatic melanoma or renal cell carcinoma. CNS irAE was diagnosed using established criteria. Concentrations of S100B and NfL in blood were measured in patients with CNS irAE and in 84 patients without CNS irAE. Findings Nine of 197 patients (4.6%) fulfilled criteria for CNS irAE. S100B and NfL in blood increased during CNS inflammation and normalized during immunosuppression. CNS irAE was detected with a sensitivity of 100% (S100B) and 79% (NfL) and a specificity of 89% (S100B) and 74% (NfL). Patients with CNS irAE had simultaneous increased concentration of C -reactive protein (CRP) (9/9) and alanine aminotransferase (ALT) and/or aspartate aminotransferase (AST) in blood (8/9). Interpretation Analysis of S100B, NfL and CRP in blood facilitates the diagnosis of CNS irAE. CNS irAE may be more common than previously reported. There may be shared immune mechanisms between CNS and hepatitis irAE.
  •  
7.
  • Bocci, Matteo, et al. (författare)
  • Infection of Brain Pericytes Underlying Neuropathology of COVID-19 Patients.
  • 2021
  • Ingår i: International journal of molecular sciences. - : MDPI AG. - 1422-0067 .- 1661-6596. ; 22:21
  • Tidskriftsartikel (refereegranskat)abstract
    • A wide range of neurological manifestations have been associated with the development of COVID-19 following SARS-CoV-2 infection. However, the etiology of the neurological symptomatology is still largely unexplored. Here, we used state-of-the-art multiplexed immunostaining of human brains (n = 6 COVID-19, median age = 69.5 years; n = 7 control, median age = 68 years) and demonstrated that expression of the SARS-CoV-2 receptor ACE2 is restricted to a subset of neurovascular pericytes. Strikingly, neurological symptoms were exclusive to, and ubiquitous in, patients that exhibited moderate to high ACE2 expression in perivascular cells. Viral dsRNA was identified in the vascular wall and paralleled by perivascular inflammation, as signified by T cell and macrophage infiltration. Furthermore, fibrinogen leakage indicated compromised integrity of the blood-brain barrier. Notably, cerebrospinal fluid from additional 16 individuals (n = 8 COVID-19, median age = 67 years; n = 8 control, median age = 69.5 years) exhibited significantly lower levels of the pericyte marker PDGFRβ in SARS-CoV-2-infected cases, indicative of disrupted pericyte homeostasis. We conclude that pericyte infection by SARS-CoV-2 underlies virus entry into the privileged central nervous system space, as well as neurological symptomatology due to perivascular inflammation and a locally compromised blood-brain barrier.
  •  
8.
  • Brum, Wagner S., et al. (författare)
  • Biological variation estimates of Alzheimer's disease plasma biomarkers in healthy individuals
  • 2024
  • Ingår i: Alzheimer's and Dementia. - 1552-5260 .- 1552-5279. ; 20:2, s. 1284-1297
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Blood biomarkers have proven useful in Alzheimer's disease (AD) research. However, little is known about their biological variation (BV), which improves the interpretation of individual-level data. METHODS: We measured plasma amyloid beta (Aβ42, Aβ40), phosphorylated tau (p-tau181, p-tau217, p-tau231), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) in plasma samples collected weekly over 10 weeks from 20 participants aged 40 to 60 years from the European Biological Variation Study. We estimated within- (CVI) and between-subject (CVG) BV, analytical variation, and reference change values (RCV). RESULTS: Biomarkers presented considerable variability in CVI and CVG. Aβ42/Aβ40 had the lowest CVI (≈ 3%) and p-tau181 the highest (≈ 16%), while others ranged from 6% to 10%. Most RCVs ranged from 20% to 30% (decrease) and 25% to 40% (increase). DISCUSSION: BV estimates for AD plasma biomarkers can potentially refine their clinical and research interpretation. RCVs might be useful for detecting significant changes between serial measurements when monitoring early disease progression or interventions. Highlights Plasma amyloid beta (Aβ42/Aβ40) presents the lowest between- and within-subject biological variation, but also changes the least in Alzheimer's disease (AD) patients versus controls. Plasma phosphorylated tau variants significantly vary in their within-subject biological variation, but their substantial fold-changes in AD likely limits the impact of their variability. Plasma neurofilament light chain and glial fibrillary acidic protein demonstrate high between-subject variation, the impact of which will depend on clinical context. Reference change values can potentially be useful in monitoring early disease progression and the safety/efficacy of interventions on an individual level. Serial sampling revealed that unexpectedly high values in heathy individuals can be observed, which urges caution when interpreting AD plasma biomarkers based on a single test result.
  •  
9.
  • Chatterjee, Pratishtha, et al. (författare)
  • Diagnostic and prognostic plasma biomarkers for preclinical Alzheimer's disease.
  • 2022
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 18:6, s. 1141-1154
  • Tidskriftsartikel (refereegranskat)abstract
    • This study involved a parallel comparison of the diagnostic and longitudinal monitoring potential of plasma glial fibrillary acidic protein (GFAP), total tau (t-tau), phosphorylated tau (p-tau181 and p-tau231), and neurofilament light (NFL) in preclinical Alzheimer's disease (AD).Plasma proteins were measured using Simoa assays in cognitively unimpaired older adults (CU), with either absence (Aβ-) or presence (Aβ+) of brain amyloidosis.Plasma GFAP, t-tau, p-tau181, and p-tau231 concentrations were higher in Aβ+ CU compared with Aβ- CU cross-sectionally. GFAP had the highest effect size and area under the curve (AUC) in differentiating between Aβ+ and Aβ- CU; however, no statistically significant differences were observed between the AUCs of GFAP, p-tau181, and p-tau231, but all were significantly higher than the AUC of NFL, and the AUC of GFAP was higher than the AUC of t-tau. The combination of a base model (BM), comprising the AD risk factors, age, sex, and apolipoprotein E gene (APOE) ε4 status with GFAP was observed to have a higher AUC (>90%) compared with the combination of BM with any of the other proteins investigated in the current study. Longitudinal analyses showed increased GFAP and p-tau181 in Aβ+ CU and increased NFL in Aβ- CU, over a 12-month duration. GFAP, p-tau181, p-tau231, and NFL showed significant correlations with cognition, whereas no significant correlations were observed with hippocampal volume.These findings highlight the diagnostic and longitudinal monitoring potential of GFAP and p-tau for preclinical AD.
  •  
10.
  • Correia, M., et al. (författare)
  • Early plasma biomarker dynamic profiles are associated with acute ischemic stroke outcomes
  • 2022
  • Ingår i: European Journal of Neurology. - : Wiley. - 1351-5101 .- 1468-1331. ; 29:6, s. 1630-1642
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Early outcome prediction after acute ischemic stroke (AIS) might be improved with blood-based biomarkers. We investigated whether the longitudinal profile of a multi-marker panel could predict the outcome of successfully recanalized AIS patients. Methods We used ultrasensitive single-molecule array (Simoa) to measure glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), total-tau (t-tau) and ELISA for brevican in a prospective study of AIS patients with anterior circulation large vessel occlusion successfully submitted to thrombectomy. Plasma was obtained at admission, upon treatment, 24 h and 72 h after treatment. Clinical and neuroimaging outcomes were assessed independently. Results Thirty-five patients (64.8%) had good early clinical or neuroimaging outcome. Baseline biomarker levels did not distinguish between outcomes. However, longitudinal intra-individual biomarker changes followed different dynamic profiles with time and according to outcome. GFAP levels exhibited an early and prominent increase between admission and just after treatment. NfL increase was less pronounced between admission and up to 24 h. T-tau increased between treatment and 24 h. Interestingly, GFAP rate-of-change (pg/ml/h) between admission and immediately after recanalization had a good discriminative capacity between clinical outcomes (AUC = 0.88, p < 0.001), which was higher than admission CT-ASPECTS (AUC = 0.75, p < 0.01). T-tau rate-of-change provided moderate discriminative capacity (AUC = 0.71, p < 0.05). Moreover, in AIS patients with admission CT-ASPECTS <9 both GFAP and NfL rate-of-change were good outcome predictors (AUC = 0.82 and 0.77, p < 0.05). Conclusion Early GFAP, t-tau and NfL rate-of-change in plasma can predict AIS clinical and neuroimaging outcome after successful recanalization. Such dynamic measures match and anticipate neuroimaging predictive capacity, potentially improving AIS patient stratification for treatment, and targeting individualized stroke care.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 41
Typ av publikation
tidskriftsartikel (40)
bokkapitel (1)
Typ av innehåll
refereegranskat (40)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Zetterberg, Henrik, ... (38)
Blennow, Kaj, 1958 (30)
Ashton, Nicholas J. (26)
Karikari, Thomas (12)
Zettergren, Anna, 19 ... (4)
Gisslén, Magnus, 196 ... (3)
visa fler...
Skoog, Ingmar, 1954 (3)
Kern, Silke (3)
Aarsland, Dag (2)
Westman, Eric (2)
Westman, E (2)
Pannee, Josef, 1979 (2)
Menon, David K. (2)
Galasko, D (1)
Rostami, Elham, 1979 ... (1)
Studahl, Marie, 1957 (1)
Boada, Mercè (1)
Tsolaki, Magda (1)
Price, Richard W (1)
Nilsson, Staffan, 19 ... (1)
Gustafson, Deborah, ... (1)
Tenovuo, Olli (1)
Blomstrand, Christia ... (1)
Hilal, S (1)
Baker, Suzanne L. (1)
Dickson, Suzanne L., ... (1)
Tegner, Yelverton, P ... (1)
Piehl, Fredrik (1)
Al Nimer, Faiez (1)
Ghidoni, R (1)
Wahlund, L. O. (1)
Hansson, Oskar (1)
Blennow, Kaj (1)
Jonsdottir, Ingibjör ... (1)
Englund, Elisabet (1)
Andersson, Lars-Magn ... (1)
Gillberg, Christophe ... (1)
Frithiof, Robert (1)
Larsson, Ing-Marie, ... (1)
Lipcsey, Miklós (1)
Hultström, Michael, ... (1)
Mattsson-Carlgren, N ... (1)
Pereira, Joana B (1)
van Westen, Danielle (1)
Soininen, Hilkka (1)
Suárez-Calvet, Marc (1)
Minguillón, Carolina (1)
Fauria, Karine (1)
Alawode, Deborah O T (1)
Heslegrave, Amanda J (1)
visa färre...
Lärosäte
Karolinska Institutet (7)
Lunds universitet (3)
Kungliga Tekniska Högskolan (2)
Umeå universitet (1)
Uppsala universitet (1)
visa fler...
Luleå tekniska universitet (1)
visa färre...
Språk
Engelska (41)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (41)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy