SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Siwy Justyna) "

Search: WFRF:(Siwy Justyna)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mischak, Harald, et al. (author)
  • Comprehensive human urine standards for comparability and standardization in clinical proteome analysis
  • 2010
  • In: Proteomics - Clinical Applications. - : Wiley. - 1862-8346 .- 1862-8354. ; 4:4, s. 464-478
  • Journal article (peer-reviewed)abstract
    • Purpose: Urine proteomics is emerging as a powerful tool for biomarker discovery. The purpose of this study is the development of a well-characterized "real life" sample that can be used as reference standard in urine clinical proteomics studies. Experimental design: We report on the generation of male and female urine samples that are extensively characterized by different platforms and methods (CE-MS, LC-MS, LC-MS/MS, 1-D gel analysis in combination with nano-LC MS/MS (using LTQ-FT ultra), and 2-DE-MS) for their proteome and peptidome. In several cases analysis involved a definition of the actual biochemical entities, i.e. proteins/peptides associated with molecular mass and detected PTMs and the relative abundance of these compounds. Results: The combination of different technologies allowed coverage of a wide mass range revealing the advantages and complementarities of the different technologies. Application of these samples in "inter-laboratory" and "inter-platform" data comparison is also demonstrated. Conclusions and clinical relevance: These well-characterized urine samples are freely available upon request to enable data comparison especially in the context of biomarker discovery and validation studies. It is also expected that they will provide the basis for the comprehensive characterization of the urinary proteome.
  •  
2.
  • Peters, Björn, et al. (author)
  • Dynamics of urine proteomics biomarker and disease progression in patients with IgA nephropathy
  • 2023
  • In: Nephrology, Dialysis and Transplantation. - : Oxford University Press. - 0931-0509 .- 1460-2385. ; 38:12, s. 2826-2834
  • Journal article (peer-reviewed)abstract
    • Background: Immunoglobulin A nephropathy (IgAN) frequently leads to kidney failure. The urinary proteomics-based classifier IgAN237 may predict disease progression at the time of kidney biopsy. We studied whether IgAN237 also predicts progression later in the course of IgAN.Methods: Urine from patients with biopsy-proven IgAN was analyzed using capillary electrophoresis-mass spectrometry at baseline (IgAN237-1, n = 103) and at follow-up (IgAN237-2, n = 89). Patients were categorized as "non-progressors" (IgAN237 ≤0.38) and "progressors" (IgAN237 >0.38). Estimated glomerular filtration rate (eGFR) and urinary albumin-creatinine ratio slopes were calculated.Results: Median age at biopsy was 44 years, interval between biopsy and IgAN237-1 was 65 months and interval between IgAN237-1 and IgAN237-2 was 258 days (interquartile range 71-531). IgAN237-1 and IgAN237-2 values did not differ significantly and were correlated (rho = 0.44, P < .001). Twenty-eight percent and 26% of patients were progressors based on IgAN237-1 and IgAN237-2, respectively. IgAN237 inversely correlated with chronic eGFR slopes (rho = -0.278, P = .02 for score-1; rho = -0.409, P = .002 for score-2) and with ±180 days eGFR slopes (rho = -0.31, P = .009 and rho = -0.439, P = .001, respectively). The ±180 days eGFR slopes were worse for progressors than for non-progressors (median -5.98 versus -1.22 mL/min/1.73 m2 per year for IgAN237-1, P < .001; -3.02 vs 1.08 mL/min/1.73 m2 per year for IgAN237-2, P = .0047). In multiple regression analysis baseline progressor/non-progressor according to IgAN237 was an independent predictor of eGFR180days-slope (P = .001).Conclusion: The urinary IgAN237 classifier represents a risk stratification tool in IgAN also later in the course of the dynamic disease. It may guide patient management in an individualized manner.
  •  
3.
  •  
4.
  • Rudnicki, Michael, et al. (author)
  • Urine proteomics for prediction of disease progression in patients with IgA nephropathy
  • 2022
  • In: Nephrology, Dialysis and Transplantation. - : Oxford University Press. - 0931-0509 .- 1460-2385. ; 37:1, s. 42-52
  • Journal article (peer-reviewed)abstract
    • Background: Risk of kidney function decline in immunoglobulin A (IgA) nephropathy (IgAN) is significant and may not be predicted by available clinical and histological tools. To serve this unmet need, we aimed at developing a urinary biomarker-based algorithm that predicts rapid disease progression in IgAN, thus enabling a personalized risk stratification.Methods: In this multicentre study, urine samples were collected in 209 patients with biopsy-proven IgAN. Progression was defined by tertiles of the annual change of estimated glomerular filtration rate (eGFR) during follow-up. Urine samples were analysed using capillary electrophoresis coupled mass spectrometry. The area under the receiver operating characteristic curve (AUC) was used to evaluate the risk prediction models.Results: Of the 209 patients, 64% were male. Mean age was 42 years, mean eGFR was 63 mL/min/1.73 m2 and median proteinuria was 1.2 g/day. We identified 237 urine peptides showing significant difference in abundance according to the tertile of eGFR change. These included fragments of apolipoprotein C-III, alpha-1 antitrypsin, different collagens, fibrinogen alpha and beta, titin, haemoglobin subunits, sodium/potassium-transporting ATPase subunit gamma, uromodulin, mucin-2, fractalkine, polymeric Ig receptor and insulin. An algorithm based on these protein fragments (IgAN237) showed a significant added value for the prediction of IgAN progression [AUC 0.89; 95% confidence interval (CI) 0.83-0.95], as compared with the clinical parameters (age, gender, proteinuria, eGFR and mean arterial pressure) alone (0.72; 95% CI 0.64-0.81).Conclusions: A urinary peptide classifier predicts progressive loss of kidney function in patients with IgAN significantly better than clinical parameters alone.
  •  
5.
  •  
6.
  • Siwy, Justyna, et al. (author)
  • CD99 and polymeric immunoglobulin receptor peptides deregulation in critical COVID-19 : A potential link to molecular pathophysiology?
  • 2021
  • In: Proteomics. - : John Wiley & Sons. - 1615-9853 .- 1615-9861. ; 21:20
  • Journal article (peer-reviewed)abstract
    • Identification of significant changes in urinary peptides may enable improved understanding of molecular disease mechanisms. We aimed towards identifying urinary peptides associated with critical course of COVID-19 to yield hypotheses on molecular pathophysiological mechanisms in disease development. In this multicentre prospective study urine samples of PCR-confirmed COVID-19 patients were collected in different centres across Europe. The urinary peptidome of 53 patients at WHO stages 6–8 and 66 at WHO stages 1–3 COVID-19 disease was analysed using capillary electrophoresis coupled to mass spectrometry. 593 peptides were identified significantly affected by disease severity. These peptides were compared with changes associated with kidney disease or heart failure. Similarities with kidney disease were observed, indicating comparable molecular mechanisms. In contrast, convincing similarity to heart failure could not be detected. The data for the first time showed deregulation of CD99 and polymeric immunoglobulin receptor peptides and of known peptides associated with kidney disease, including collagen and alpha-1-antitrypsin. Peptidomic findings were in line with the pathophysiology of COVID-19. The clinical corollary is that COVID-19 induces specific inflammation of numerous tissues including endothelial lining. Restoring these changes, especially in CD99, PIGR and alpha-1-antitripsin, may represent a valid and effective therapeutic approach in COVID-19, targeting improvement of endothelial integrity.
  •  
7.
  • Staessen, Jan A., et al. (author)
  • Predictive performance and clinical application of COV50, a urinary proteomic biomarker in early COVID-19 infection : a prospective multicentre cohort study
  • 2022
  • In: The Lancet Digital Health. - : Elsevier. - 2589-7500. ; 4:10, s. e727-e737
  • Journal article (peer-reviewed)abstract
    • Background: The SARS-CoV-2 pandemic is a worldwide challenge. The CRIT-CoV-U pilot study generated a urinary proteomic biomarker consisting of 50 peptides (COV50), which predicted death and disease progression from SARS-CoV-2. After the interim analysis presented for the German Government, here, we aimed to analyse the full dataset to consolidate the findings and propose potential clinical applications of this biomarker.Methods: CRIT-CoV-U was a prospective multicentre cohort study. In eight European countries (Austria, France, Germany, Greece, North Macedonia, Poland, Spain, and Sweden), 1012 adults with PCR-confirmed COVID-19 were followed up for death and progression along the 8-point WHO scale. Capillary electrophoresis coupled with mass spectrometry was used for urinary proteomic profiling. Statistical methods included logistic regression and receiver operating characteristic curve analysis with a comparison of the area under curve (AUC) between nested models. Hospitalisation costs were derived from the care facility corresponding with the Markov chain probability of reaching WHO scores ranging from 3 to 8 and flat-rate hospitalisation costs adjusted for the gross per capita domestic product of each country.Findings: From June 30 to Nov 19, 2020, 228 participants were recruited, and from April 30, 2020, to April 14, 2021, 784 participants were recruited, resulting in a total of 1012 participants. The entry WHO scores were 1–3 in 445 (44%) participants, 4–5 in 529 (52%) participants, and 6 in 38 (4%) participants; and of all participants, 119 died and 271 had disease progression. The odds ratio (OR) associated with COV50 in all 1012 participants for death was 2·44 (95% CI 2·05–2·92) unadjusted and 1·67 (1·34–2·07) when adjusted for sex, age, BMI, comorbidities, and baseline WHO score; and for disease progression, the OR was 1·79 (1·60–2·01) when unadjusted and 1·63 (1·41–1·91) when adjusted (p<0·0001 for all). The predictive accuracy of the optimised COV50 thresholds was 74·4% (71·6–77·1%) for mortality (threshold 0·47) and 67·4% (64·4–70·3%) for disease progression (threshold 0·04). When adjusted for covariables and the baseline WHO score, these thresholds improved AUCs from 0·835 to 0·853 (p=0·033) for death and from 0·697 to 0·730 (p=0·0008) for progression. Of 196 participants who received ambulatory care, 194 (99%) did not reach the 0·04 threshold. The cost reductions associated with 1 day less hospitalisation per 1000 participants were million Euro (M€) 0·887 (5–95% percentile interval 0·730–1·039) in participants at a low risk (COV50 <0·04) and M€2·098 (1·839-2·365) in participants at a high risk (COV50 ≥0·04).Interpretation: The urinary proteomic COV50 marker might be predictive of adverse COVID-19 outcomes. Even in people with mild-to-moderate PCR-confirmed infections (WHO scores 1–4), the 0·04 COV50 threshold justifies earlier drug treatment, thereby potentially reducing the number of days in hospital and associated costs. Funding: German Federal Ministry of Health.
  •  
8.
  • Wendt, Ralph, et al. (author)
  • A urinary peptidomic profile predicts outcome in SARS-CoV-2-infected patients.
  • 2021
  • In: Lancet EClinicalMedicine. - : Elsevier BV. - 2589-5370. ; 36
  • Journal article (peer-reviewed)abstract
    • COVID-19 prediction models based on clinical characteristics, routine biochemistry and imaging, have been developed, but little is known on proteomic markers reflecting the molecular pathophysiology of disease progression.he multicentre (six European study sites) Prospective Validation of a Proteomic Urine Test for Early and Accurate Prognosis of Critical Course Complications in Patients with SARS-CoV-2 Infection Study (Crit-COV-U) is recruiting consecutive patients (≥ 18 years) with PCR-confirmed SARS-CoV-2 infection. A urinary proteomic biomarker (COV50) developed by capillary-electrophoresis-mass spectrometry (CE-MS) technology, comprising 50 sequenced peptides and identifying the parental proteins, was evaluated in 228 patients (derivation cohort) with replication in 99 patients (validation cohort). Death and progression along the World Health Organization (WHO) Clinical Progression Scale were assessed up to 21 days after the initial PCR test. Statistical methods included logistic regression, receiver operating curve (ROC) analysis and comparison of the area under the curve (AUC).in the derivation cohort, 23 patients died, and 48 developed worse WHO scores. The odds ratios (OR) for death per 1 standard deviation (SD) increment in COV50 were 3·52 (95% CI, 2·02-6·13, p <0·0001) unadjusted and 2·73 (1·25-5·95, p = 0·012) adjusted for sex, age, baseline WHO score, body mass index (BMI) and comorbidities. For WHO scale progression, the corresponding OR were 2·63 (1·80-3·85, p<0·0001) and 3·38 (1·85-6·17, p<0·0001), respectively. The area under the curve (AUC) for COV50 as a continuously distributed variable was 0·80 (0·72-0·88) for mortality and 0·74 (0·66-0·81) for worsening WHO score. The optimised COV50 thresholds for mortality and worsening WHO score were 0·47 and 0·04 with sensitivity/specificity of 87·0 (74·6%) and 77·1 (63·9%), respectively. On top of covariates, COV50 improved the AUC, albeit borderline for death, from 0·78 to 0·82 (p = 0·11) and 0·84 (p = 0·052) for mortality and from 0·68 to 0·78 (p = 0·0097) and 0·75 (p = 0·021) for worsening WHO score. The validation cohort findings were confirmatory.this first CRIT-COV-U report proves the concept that urinary proteomic profiling generates biomarkers indicating adverse COVID-19 outcomes, even at an early disease stage, including WHO stages 1-3. These findings need to be consolidated in an upcoming final dataset.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view