SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sjöholm A.) ;pers:(Sjöholm Johannes)"

Sökning: WFRF:(Sjöholm A.) > Sjöholm Johannes

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lestinsky, M., et al. (författare)
  • Physics book: CRYRING@ESR
  • 2016
  • Ingår i: European Physical Journal: Special Topics. - : Springer Science and Business Media LLC. - 1951-6401 .- 1951-6355. ; 225:5, s. 797-882
  • Forskningsöversikt (refereegranskat)abstract
    • The exploration of the unique properties of stored and cooled beams of highly-charged ions as provided by heavy-ion storage rings has opened novel and fascinating research opportunities in the realm of atomic and nuclear physics research. Since the late 1980s, pioneering work has been performed at the CRYRING at Stockholm (Abrahamsson et al. 1993) and at the Test Storage Ring (TSR) at Heidelberg (Baumann et al. 1988). For the heaviest ions in the highest charge-states, a real quantum jump was achieved in the early 1990s by the commissioning of the Experimental Storage Ring (ESR) at GSI Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt (Franzke 1987) where challenging experiments on the electron dynamics in the strong field regime as well as nuclear physics studies on exotic nuclei and at the borderline to atomic physics were performed. Meanwhile also at Lanzhou a heavy-ion storage ring has been taken in operation, exploiting the unique research opportunities in particular for medium-heavy ions and exotic nuclei (Xia et al. 2002).
  •  
2.
  • Gorda, O., et al. (författare)
  • Ion-optical design of CRYRING@ESR
  • 2015
  • Ingår i: Physica Scripta. - 0031-8949 .- 1402-4896. ; T166
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2012 the CRYRING storage ring was delivered from Stockholm to Darmstadt as a part of the Swedish in-kind contribution to the FAIR project. The ring lattice has been slightly changed for optimal injection and to provide additional space for experiment equipment. For the injection from the experimental storage ring (ESR), a new transfer line has been designed. The local injector line has been significantly modified compared to the previous one in Stockholm taking into account the geometry of the existing GSI building. In this paper we present the ion-optical properties of CRYRING@ESR after the described modifications. Single-turn injection from the ESR and multi-turn injection from the local injector are discussed. Ion-optical calculations of fast and slow extraction from CRYRING are also presented. The closed orbit correction scheme is considered taking into account the future arrangement of the beam position monitors and correction magnets. Based on the results of the calculations the requirements for the magnet alignment are finally discussed.
  •  
3.
  • Sjöholm, Johannes (författare)
  • Trapping Tyrosine Z : Exploring the Relay between Photochemistry and Water Oxidation in Photosystem II
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Photosystem II is unique! It remains the only enzyme that can oxidize water using light as energy input. Water oxidation in photosystem II is catalyzed by the CaMn4 cluster. The electrons extracted from the CaMn4 cluster are transferred to P680+ via the tyrosine residue D1-Tyr161 (YZ). Favorable oxidation of YZ is coupled to a proton transfer along a hydrogen bond to the nearby D1-His190 residue, resulting in the neutral radical YZ•. By illuminating photosystem II at cryogenic temperatures, YZ• can be trapped in a stable state. Magnetic interaction between this radical and the CaMn4 cluster gives rise to a split electron paramagnetic resonance (EPR) signal with characteristics that depend on the oxidation state (S state) of the cluster.The mechanism by which the split EPR signals are formed is different depending on the S state. In the S0 and S1 states, split signal induction proceeds via a P680+-centered mechanism, whereas in the S2 and S3 states, our results show that split induction stems from a Mn-centered mechanism. This S state-dependent pattern of split EPR signal induction can be correlated to the charge of the CaMn4 cluster in the S state in question and has prompted us to propose a general model for the induction mechanism across the different S states. At the heart of this model is the stability or otherwise of the YZ•–(D1-His190)+ pair during cryogenic illumination. The model is closely related to the sequence of electron and proton transfers from the cluster during the S cycle.Furthermore, the important hydrogen bond between YZ and D1-His190 has been investigated by following the split EPR signal formation in the different S states as a function of pH. All split EPR signals investigated decrease in intensity with a pKa of ~4-5. This pKa can be correlated to a titration event that disrupts the essential hydrogen bond, possibly by a direct protonation of D1-His190.  This has important consequences for the function of the CaMn4 cluster as this critical YZ–D1-His190 hydrogen bond steers a multitude of reactions at the cluster.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy