SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sjöholm LK) "

Sökning: WFRF:(Sjöholm LK)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlén Bergman, Emma, et al. (författare)
  • Increased CD4+ T cell lineage commitment determined by CpG methylation correlates with better prognosis in urinary bladder cancer patients
  • 2018
  • Ingår i: Clinical Epigenetics. - : BMC. - 1868-7083. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Urinary bladder cancer is a common malignancy worldwide. Environmental factors and chronic inflammation are correlated with the disease risk. Diagnosis is performed by transurethral resection of the bladder, and patients with muscle invasive disease preferably proceed to radical cystectomy, with or without neoadjuvant chemotherapy. The anti-tumour immune responses, known to be initiated in the tumour and draining lymph nodes, may play a major role in future treatment strategies. Thus, increasing the knowledge of tumour-associated immunological processes is important. Activated CD4+ T cells differentiate into four main separate lineages: Th1, Th2, Th17 and Treg, and they are recognized by their effector molecules IFN-γ, IL-13, IL-17A, and the transcription factor Foxp3, respectively. We have previously demonstrated signature CpG sites predictive for lineage commitment of these four major CD4+ T cell lineages. Here, we investigate the lineage commitment specifically in tumour, lymph nodes and blood and relate them to the disease stage and response to neoadjuvant chemotherapy.RESULTS: Blood, tumour and regional lymph nodes were obtained from patients at time of transurethral resection of the bladder and at radical cystectomy. Tumour-infiltrating CD4+ lymphocytes were significantly hypomethylated in all four investigated lineage loci compared to CD4+ lymphocytes in lymph nodes and blood (lymph nodes vs tumour-infiltrating lymphocytes: IFNG -4229 bp p < 0.0001, IL13 -11 bp p < 0.05, IL17A -122 bp p < 0.01 and FOXP3 -77 bp p > 0.05). Examination of individual lymph nodes displayed different methylation signatures, suggesting possible correlation with future survival. More advanced post-cystectomy tumour stages correlated significantly with increased methylation at the IFNG -4229 bp locus. Patients with complete response to neoadjuvant chemotherapy displayed significant hypomethylation in CD4+ T cells for all four investigated loci, most prominently in IFNG p < 0.0001. Neoadjuvant chemotherapy seemed to result in a relocation of Th1-committed CD4+ T cells from blood, presumably to the tumour, indicated by shifts in the methylation patterns, whereas no such shifts were seen for lineages corresponding to IL13, IL17A and FOXP3.CONCLUSION: Increased lineage commitment in CD4+ T cells, as determined by demethylation in predictive CpG sites, is associated with lower post-cystectomy tumour stage, complete response to neoadjuvant chemotherapy and overall better outcome, suggesting epigenetic profiling of CD4+ T cell lineages as a useful readout for clinical staging.
  •  
2.
  • Meng, Weida, et al. (författare)
  • Genotype-dependent epigenetic regulation of DLGAP2 in alcohol use and dependence.
  • 2019
  • Ingår i: Molecular Psychiatry. - 1359-4184 .- 1476-5578.
  • Tidskriftsartikel (refereegranskat)abstract
    • Alcohol misuse is a major public health problem originating from genetic and environmental risk factors. Alterations in the brain epigenome may orchestrate changes in gene expression that lead to alcohol misuse and dependence. Through epigenome-wide association analysis of DNA methylation from human brain tissues, we identified a differentially methylated region, DMR-DLGAP2, associated with alcohol dependence. Methylation within DMR-DLGAP2 was found to be genotype-dependent, allele-specific and associated with reward processing in brain. Methylation at the DMR-DLGAP2 regulated expression of DLGAP2 in vitro, and Dlgap2-deficient mice showed reduced alcohol consumption compared with wild-type controls. These results suggest that DLGAP2 may be an interface for genetic and epigenetic factors controlling alcohol use and dependence.
  •  
3.
  • Lavebratt, Catharina, et al. (författare)
  • CRY2 is associated with depression
  • 2010
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Abnormalities in the circadian clockwork often characterize patients with major depressive and bipolar disorders. Circadian clock genes are targets of interest in these patients. CRY2 is a circadian gene that participates in regulation of the evening oscillator. This is of interest in mood disorders where a lack of switch from evening to morning oscillators has been postulated.Principal Findings: We observed a marked diurnal variation in human CRY2 mRNA levels from peripheral blood mononuclear cells and a significant up-regulation (P = 0.020) following one-night total sleep deprivation, a known antidepressant. In depressed bipolar patients, levels of CRY2 mRNA were decreased (P = 0.029) and a complete lack of increase was observed following sleep deprivation. To investigate a possible genetic contribution, we undertook SNP genotyping of the CRY2 gene in two independent population-based samples from Sweden (118 cases and 1011 controls) and Finland (86 cases and 1096 controls). The CRY2 gene was significantly associated with winter depression in both samples (haplotype analysis in Swedish and Finnish samples: OR = 1.8, P = 0.0059 and OR = 1.8, P = 0.00044, respectively).Conclusions: We propose that a CRY2 locus is associated with vulnerability for depression, and that mechanisms of action involve dysregulation of CRY2 expression.
  •  
4.
  •  
5.
  •  
6.
  • Sjöholm, Louise K, et al. (författare)
  • Evaluation of Post-Mortem Effects on Global Brain DNA Methylation and Hydroxymethylation.
  • 2018
  • Ingår i: Basic & Clinical Pharmacology & Toxicology. - 1742-7835 .- 1742-7843. ; 122:2, s. 208-213
  • Tidskriftsartikel (refereegranskat)abstract
    • The number of epigenetic studies on brain functions and diseases are dramatically increasing, but little is known about the impact of post-mortem intervals and post-sampling effects on DNA modifications such as 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Here, we examined post-mortem-induced changes in global brain 5mC and 5hmC levels at post-mortem intervals up to 540 min., and studied effects of tissue heat stabilization, using LUMA and ELISA. The global 5mC and 5hmC levels were generally higher in the cerebellum of adult rats than neonates. When measured by ELISA, the global 5mC content in adults, but not neonates, decreased with the post-mortem interval reaching a significantly lower level in cerebellum tissue at the post-mortem interval 540 min. (2.9 ± 0.7%; mean ± S.E.M.) compared to control (3.7 ± 0.6%). The global 5hmC levels increased with post-mortem interval reaching a significantly higher level at 540 min. (0.29 ± 0.06%) compared to control (0.19 ± 0.03%). This suggests that the post-mortem interval may confound 5mC and 5hmC analysis in human brain tissues as the post-mortem handling could vary substantially. The reactive oxygen species (ROS) level in cerebellum also increased over time, in particular in adults, and may be part of the mechanism that causes the observed post-mortem changes in 5mC and 5hmC. The global 5mC and 5hmC states were unaffected by heat stabilization, allowing analysis of tissues that are stabilized to preserve more labile analytes. Further studies in human samples are needed to confirm post-mortem effects on DNA methylation/hydroxymethylation and elucidate details of the underlying mechanisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy