SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Skoog L) ;lar1:(lu)"

Sökning: WFRF:(Skoog L) > Lunds universitet

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Bethlehem, RAI, et al. (författare)
  • Brain charts for the human lifespan
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 604:7906, s. 525-
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight1. Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data (http://www.brainchart.io/). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories2 of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones3, showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.
  •  
4.
  •  
5.
  •  
6.
  • Jansen, Willemijn J, et al. (författare)
  • Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum.
  • 2022
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 79:3, s. 228-243
  • Tidskriftsartikel (refereegranskat)abstract
    • One characteristic histopathological event in Alzheimer disease (AD) is cerebral amyloid aggregation, which can be detected by biomarkers in cerebrospinal fluid (CSF) and on positron emission tomography (PET) scans. Prevalence estimates of amyloid pathology are important for health care planning and clinical trial design.To estimate the prevalence of amyloid abnormality in persons with normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia and to examine the potential implications of cutoff methods, biomarker modality (CSF or PET), age, sex, APOE genotype, educational level, geographical region, and dementia severity for these estimates.This cross-sectional, individual-participant pooled study included participants from 85 Amyloid Biomarker Study cohorts. Data collection was performed from January 1, 2013, to December 31, 2020. Participants had normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia. Normal cognition and subjective cognitive decline were defined by normal scores on cognitive tests, with the presence of cognitive complaints defining subjective cognitive decline. Mild cognitive impairment and clinical AD dementia were diagnosed according to published criteria.Alzheimer disease biomarkers detected on PET or in CSF.Amyloid measurements were dichotomized as normal or abnormal using cohort-provided cutoffs for CSF or PET or by visual reading for PET. Adjusted data-driven cutoffs for abnormal amyloid were calculated using gaussian mixture modeling. Prevalence of amyloid abnormality was estimated according to age, sex, cognitive status, biomarker modality, APOE carrier status, educational level, geographical location, and dementia severity using generalized estimating equations.Among the 19097 participants (mean [SD] age, 69.1 [9.8] years; 10148 women [53.1%]) included, 10139 (53.1%) underwent an amyloid PET scan and 8958 (46.9%) had an amyloid CSF measurement. Using cohort-provided cutoffs, amyloid abnormality prevalences were similar to 2015 estimates for individuals without dementia and were similar across PET- and CSF-based estimates (24%; 95% CI, 21%-28%) in participants with normal cognition, 27% (95% CI, 21%-33%) in participants with subjective cognitive decline, and 51% (95% CI, 46%-56%) in participants with mild cognitive impairment, whereas for clinical AD dementia the estimates were higher for PET than CSF (87% vs 79%; mean difference, 8%; 95% CI, 0%-16%; P=.04). Gaussian mixture modeling-based cutoffs for amyloid measures on PET scans were similar to cohort-provided cutoffs and were not adjusted. Adjusted CSF cutoffs resulted in a 10% higher amyloid abnormality prevalence than PET-based estimates in persons with normal cognition (mean difference, 9%; 95% CI, 3%-15%; P=.004), subjective cognitive decline (9%; 95% CI, 3%-15%; P=.005), and mild cognitive impairment (10%; 95% CI, 3%-17%; P=.004), whereas the estimates were comparable in persons with clinical AD dementia (mean difference, 4%; 95% CI, -2% to 9%; P=.18).This study found that CSF-based estimates using adjusted data-driven cutoffs were up to 10% higher than PET-based estimates in people without dementia, whereas the results were similar among people with dementia. This finding suggests that preclinical and prodromal AD may be more prevalent than previously estimated, which has important implications for clinical trial recruitment strategies and health care planning policies.
  •  
7.
  • Vermunt, L., et al. (författare)
  • Duration of preclinical, prodromal, and dementia stages of Alzheimer's disease in relation to age, sex, and APOE genotype
  • 2019
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 15:7, s. 888-898
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: We estimated the age-specific duration of the preclinical, prodromal, and dementia stages of Alzheimer's disease (AD) and the influence of sex, setting, apolipoprotein E (APOE) genotype, and cerebrospinal fluid tau on disease duration. Methods: We performed multistate modeling in a combined sample of 6 cohorts (n = 3268) with death as the end stage and estimated the preclinical, prodromal, and dementia stage duration. Results: The overall AD duration varied between 24 years (age 60) and 15 years (age 80). For individuals presenting with preclinical AD, age 70, the estimated preclinical AD duration was 10 years, prodromal AD 4 years, and dementia 6 years. Male sex, clinical setting, APOE epsilon 4 allele carriership, and abnormal cerebrospinal fluid tau were associated with a shorter duration, and these effects depended on disease stage. Discussion: Estimates of AD disease duration become more accurate if age, sex, setting, APOE, and cerebrospinal fluid tau are taken into account. This will be relevant for clinical practice and trial design. (C) 2019 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
  •  
8.
  • Chouraki, V, et al. (författare)
  • Plasma amyloid-β and risk of Alzheimer's disease in the Framingham Heart Study.
  • 2015
  • Ingår i: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Plasma amyloid-β (Aβ) peptide levels have been examined as a low-cost accessible marker for risk of incident Alzheimer's disease (AD) and dementia, but results have varied between studies. We reassessed these associations in one of the largest, prospective, community-based studies to date. METHODS: A total of 2189 dementia-free, Framingham Study participants aged >60 years (mean age, 72 ± 8 years; 56% women) had plasma Aβ1-42 and Aβ1-40 measured and were followed prospectively (mean, 7.6 ± 3.0 years) for dementia/AD. RESULTS: Increased plasma Aβ1-42 levels were associated with lower risk of dementia (Aβ1-42: hazard ratio [HR] = 0.80 [0.71‒0.90], P < .001; Aβ1-42-to-Aβ1-40 ratio: HR = 0.86 [0.76‒0.98], P = .027) and AD (Aβ1-42: HR = 0.79 [0.69‒0.90], P < .001; Aβ1-42-to-Aβ1-40 ratio: HR = 0.83 [0.72‒0.96], P = .012). CONCLUSION: Our results suggest that lower plasma Aβ levels are associated with risk of incident AD and dementia. They encourage further evaluation of plasma Aβ levels as a biomarker for risk of developing clinical AD and dementia. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
  •  
9.
  • Mattke, S., et al. (författare)
  • Estimates of Current Capacity for Diagnosing Alzheimer's Disease in Sweden and the Need to Expand Specialist Numbers
  • 2024
  • Ingår i: JPAD-JOURNAL OF PREVENTION OF ALZHEIMERS DISEASE. - 2274-5807 .- 2426-0266. ; 11:1, s. 155-161
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThe emergence of disease-modifying Alzheimer's (AD) treatments provides new hope to patients and families but concerns have been raised about the preparedness of healthcare systems to provide timely access to such treatments because of a combination of a complex diagnostic process and a large prevalent pool.ObjectivesWe assess the preparedness of Sweden, a high-income country known for its dementia-friendly policies, to diagnose AD patients eligible for treatment within a six-month window, given current capacity for specialist evaluations and biomarker testing. We calculate the investment requirements for Sweden to achieve this target over a timeframe of 20 years.DesignDesk research to identify data for population, mortality, disease burden, cost of services and current capacity, expert consultation to inform assumptions about patient journey, and use of a Markov model to predict waiting times. The model simulates the patients' journey through different evaluation stages: initial evaluation by a primary care specialist, neurocognitive testing by an AD specialist, and confirmatory biomarker testing with PET scanning or cerebrospinal fluid (CSF) testing. The model assumes specialist appointments and PET scans are capacity constrained, and patients progress from cognitively normal to MCI and from MCI to dementia in the resulting waiting times.MeasurementsProjected waiting times for diagnosis of eligibility for disease-modifying Alzheimer's treatment from 2023 to 2042 assuming current capacity, assuming 20% of Swedish residents aged 60 years and above would seek an evaluation for cognitive decline. Investments required to scale capacity up to reach target of providing diagnosis within six months on average.ResultsInitial average waiting times for AD specialist appointments would be around 21 months in 2023 and remain around 55 months through 2042, as demand would continue to outstrip supply throughout the 20-year model horizon. Waiting times for biomarker testing would be stable at less than four weeks, as patients would be held up in the queue for their first specialist consultations, and use of CSF testing is widely accepted in Sweden. An additional 25% of AD specialists would have to be added above the current growth trend to reduce waiting times to less than 6 months at an average annual cost of approximately 805 million SEK. The increased cost of volume of biomarker testing would amount to about 106 million SEK per year.ConclusionsAt current capacity, the Swedish healthcare system is unable to provide timely diagnosis of patients eligible for disease-modifying AD treatment. Although future diagnostic technologies, such as digital cognitive assessments and blood tests for the AD pathology, might decrease demand for capacity-constrained services, substantial investments will be required to meet a target of less than six months of waiting time for a diagnosis.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy