SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Smedby Örjan) ;lar1:(ki)"

Sökning: WFRF:(Smedby Örjan) > Karolinska Institutet

  • Resultat 1-10 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Thord, et al. (författare)
  • Consistent intensity inhomogeneity correction in water-fat MRI
  • 2015
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley-Blackwell. - 1053-1807 .- 1522-2586. ; 42:2
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To quantitatively and qualitatively evaluate the water-signal performance of the consistent intensity inhomogeneity correction (CIIC) method to correct for intensity inhomogeneitiesMETHODS: Water-fat volumes were acquired using 1.5 Tesla (T) and 3.0T symmetrically sampled 2-point Dixon three-dimensional MRI. Two datasets: (i) 10 muscle tissue regions of interest (ROIs) from 10 subjects acquired with both 1.5T and 3.0T whole-body MRI. (ii) Seven liver tissue ROIs from 36 patients imaged using 1.5T MRI at six time points after Gd-EOB-DTPA injection. The performance of CIIC was evaluated quantitatively by analyzing its impact on the dispersion and bias of the water image ROI intensities, and qualitatively using side-by-side image comparisons.RESULTS: CIIC significantly ( P1.5T≤2.3×10-4,P3.0T≤1.0×10-6) decreased the nonphysiological intensity variance while preserving the average intensity levels. The side-by-side comparisons showed improved intensity consistency ( Pint⁡≤10-6) while not introducing artifacts ( Part=0.024) nor changed appearances ( Papp≤10-6).CONCLUSION: CIIC improves the spatiotemporal intensity consistency in regions of a homogenous tissue type.
  •  
2.
  • Astaraki, Mehdi, PhD Student, 1984-, et al. (författare)
  • A Comparative Study of Radiomics and Deep-Learning Based Methods for Pulmonary Nodule Malignancy Prediction in Low Dose CT Images
  • 2021
  • Ingår i: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Both radiomics and deep learning methods have shown great promise in predicting lesion malignancy in various image-based oncology studies. However, it is still unclear which method to choose for a specific clinical problem given the access to the same amount of training data. In this study, we try to compare the performance of a series of carefully selected conventional radiomics methods, end-to-end deep learning models, and deep-feature based radiomics pipelines for pulmonary nodule malignancy prediction on an open database that consists of 1297 manually delineated lung nodules.Methods: Conventional radiomics analysis was conducted by extracting standard handcrafted features from target nodule images. Several end-to-end deep classifier networks, including VGG, ResNet, DenseNet, and EfficientNet were employed to identify lung nodule malignancy as well. In addition to the baseline implementations, we also investigated the importance of feature selection and class balancing, as well as separating the features learned in the nodule target region and the background/context region. By pooling the radiomics and deep features together in a hybrid feature set, we investigated the compatibility of these two sets with respect to malignancy prediction.Results: The best baseline conventional radiomics model, deep learning model, and deep-feature based radiomics model achieved AUROC values (mean ± standard deviations) of 0.792 ± 0.025, 0.801 ± 0.018, and 0.817 ± 0.032, respectively through 5-fold cross-validation analyses. However, after trying out several optimization techniques, such as feature selection and data balancing, as well as adding context features, the corresponding best radiomics, end-to-end deep learning, and deep-feature based models achieved AUROC values of 0.921 ± 0.010, 0.824 ± 0.021, and 0.936 ± 0.011, respectively. We achieved the best prediction accuracy from the hybrid feature set (AUROC: 0.938 ± 0.010).Conclusion: The end-to-end deep-learning model outperforms conventional radiomics out of the box without much fine-tuning. On the other hand, fine-tuning the models lead to significant improvements in the prediction performance where the conventional and deep-feature based radiomics models achieved comparable results. The hybrid radiomics method seems to be the most promising model for lung nodule malignancy prediction in this comparative study.
  •  
3.
  • Astaraki, Mehdi, PhD Student, 1984- (författare)
  • Advanced Machine Learning Methods for Oncological Image Analysis
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cancer is a major public health problem, accounting for an estimated 10 million deaths worldwide in 2020 alone. Rapid advances in the field of image acquisition and hardware development over the past three decades have resulted in the development of modern medical imaging modalities that can capture high-resolution anatomical, physiological, functional, and metabolic quantitative information from cancerous organs. Therefore, the applications of medical imaging have become increasingly crucial in the clinical routines of oncology, providing screening, diagnosis, treatment monitoring, and non/minimally-invasive evaluation of disease prognosis. The essential need for medical images, however, has resulted in the acquisition of a tremendous number of imaging scans. Considering the growing role of medical imaging data on one side and the challenges of manually examining such an abundance of data on the other side, the development of computerized tools to automatically or semi-automatically examine the image data has attracted considerable interest. Hence, a variety of machine learning tools have been developed for oncological image analysis, aiming to assist clinicians with repetitive tasks in their workflow.This thesis aims to contribute to the field of oncological image analysis by proposing new ways of quantifying tumor characteristics from medical image data. Specifically, this thesis consists of six studies, the first two of which focus on introducing novel methods for tumor segmentation. The last four studies aim to develop quantitative imaging biomarkers for cancer diagnosis and prognosis.The main objective of Study I is to develop a deep learning pipeline capable of capturing the appearance of lung pathologies, including lung tumors, and integrating this pipeline into the segmentation networks to leverage the segmentation accuracy. The proposed pipeline was tested on several comprehensive datasets, and the numerical quantifications show the superiority of the proposed prior-aware DL framework compared to the state of the art. Study II aims to address a crucial challenge faced by supervised segmentation models: dependency on the large-scale labeled dataset. In this study, an unsupervised segmentation approach is proposed based on the concept of image inpainting to segment lung and head-neck tumors in images from single and multiple modalities. The proposed autoinpainting pipeline shows great potential in synthesizing high-quality tumor-free images and outperforms a family of well-established unsupervised models in terms of segmentation accuracy.Studies III and IV aim to automatically discriminate the benign from the malignant pulmonary nodules by analyzing the low-dose computed tomography (LDCT) scans. In Study III, a dual-pathway deep classification framework is proposed to simultaneously take into account the local intra-nodule heterogeneities and the global contextual information. Study IV seeks to compare the discriminative power of a series of carefully selected conventional radiomics methods, end-to-end Deep Learning (DL) models, and deep features-based radiomics analysis on the same dataset. The numerical analyses show the potential of fusing the learned deep features into radiomic features for boosting the classification power.Study V focuses on the early assessment of lung tumor response to the applied treatments by proposing a novel feature set that can be interpreted physiologically. This feature set was employed to quantify the changes in the tumor characteristics from longitudinal PET-CT scans in order to predict the overall survival status of the patients two years after the last session of treatments. The discriminative power of the introduced imaging biomarkers was compared against the conventional radiomics, and the quantitative evaluations verified the superiority of the proposed feature set. Whereas Study V focuses on a binary survival prediction task, Study VI addresses the prediction of survival rate in patients diagnosed with lung and head-neck cancer by investigating the potential of spherical convolutional neural networks and comparing their performance against other types of features, including radiomics. While comparable results were achieved in intra-dataset analyses, the proposed spherical-based features show more predictive power in inter-dataset analyses.In summary, the six studies incorporate different imaging modalities and a wide range of image processing and machine-learning techniques in the methods developed for the quantitative assessment of tumor characteristics and contribute to the essential procedures of cancer diagnosis and prognosis.
  •  
4.
  • Astaraki, Mehdi, PhD Student, 1984-, et al. (författare)
  • Benign-malignant pulmonary nodule classification in low-dose CT with convolutional features
  • 2021
  • Ingår i: Physica medica (Testo stampato). - : Elsevier BV. - 1120-1797 .- 1724-191X. ; 83, s. 146-153
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Low-Dose Computed Tomography (LDCT) is the most common imaging modality for lung cancer diagnosis. The presence of nodules in the scans does not necessarily portend lung cancer, as there is an intricate relationship between nodule characteristics and lung cancer. Therefore, benign-malignant pulmonary nodule classification at early detection is a crucial step to improve diagnosis and prolong patient survival. The aim of this study is to propose a method for predicting nodule malignancy based on deep abstract features.Methods: To efficiently capture both intra-nodule heterogeneities and contextual information of the pulmonary nodules, a dual pathway model was developed to integrate the intra-nodule characteristics with contextual attributes. The proposed approach was implemented with both supervised and unsupervised learning schemes. A random forest model was added as a second component on top of the networks to generate the classification results. The discrimination power of the model was evaluated by calculating the Area Under the Receiver Operating Characteristic Curve (AUROC) metric. Results: Experiments on 1297 manually segmented nodules show that the integration of context and target supervised deep features have a great potential for accurate prediction, resulting in a discrimination power of 0.936 in terms of AUROC, which outperformed the classification performance of the Kaggle 2017 challenge winner.Conclusion: Empirical results demonstrate that integrating nodule target and context images into a unified network improves the discrimination power, outperforming the conventional single pathway convolutional neural networks.
  •  
5.
  • Astaraki, Mehdi, PhD Student, 1984-, et al. (författare)
  • Early survival prediction in non-small cell lung cancer from PET/CT images using an intra-tumor partitioning method
  • 2019
  • Ingår i: Physica medica (Testo stampato). - : Elsevier BV. - 1120-1797 .- 1724-191X. ; 60, s. 58-65
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeTo explore prognostic and predictive values of a novel quantitative feature set describing intra-tumor heterogeneity in patients with lung cancer treated with concurrent and sequential chemoradiotherapy.MethodsLongitudinal PET-CT images of 30 patients with non-small cell lung cancer were analysed. To describe tumor cell heterogeneity, the tumors were partitioned into one to ten concentric regions depending on their sizes, and, for each region, the change in average intensity between the two scans was calculated for PET and CT images separately to form the proposed feature set. To validate the prognostic value of the proposed method, radiomics analysis was performed and a combination of the proposed novel feature set and the classic radiomic features was evaluated. A feature selection algorithm was utilized to identify the optimal features, and a linear support vector machine was trained for the task of overall survival prediction in terms of area under the receiver operating characteristic curve (AUROC).ResultsThe proposed novel feature set was found to be prognostic and even outperformed the radiomics approach with a significant difference (AUROCSALoP = 0.90 vs. AUROCradiomic = 0.71) when feature selection was not employed, whereas with feature selection, a combination of the novel feature set and radiomics led to the highest prognostic values.ConclusionA novel feature set designed for capturing intra-tumor heterogeneity was introduced. Judging by their prognostic power, the proposed features have a promising potential for early survival prediction.
  •  
6.
  •  
7.
  • Astaraki, Mehdi, PhD Student, 1984-, et al. (författare)
  • Prior-aware autoencoders for lung pathology segmentation
  • 2022
  • Ingår i: Medical Image Analysis. - : Elsevier BV. - 1361-8415 .- 1361-8423. ; 80, s. 102491-
  • Tidskriftsartikel (refereegranskat)abstract
    • Segmentation of lung pathology in Computed Tomography (CT) images is of great importance for lung disease screening. However, the presence of different types of lung pathologies with a wide range of heterogeneities in size, shape, location, and texture, on one side, and their visual similarity with respect to surrounding tissues, on the other side, make it challenging to perform reliable automatic lesion seg-mentation. To leverage segmentation performance, we propose a deep learning framework comprising a Normal Appearance Autoencoder (NAA) model to learn the distribution of healthy lung regions and re-construct pathology-free images from the corresponding pathological inputs by replacing the pathological regions with the characteristics of healthy tissues. Detected regions that represent prior information re-garding the shape and location of pathologies are then integrated into a segmentation network to guide the attention of the model into more meaningful delineations. The proposed pipeline was tested on three types of lung pathologies, including pulmonary nodules, Non-Small Cell Lung Cancer (NSCLC), and Covid-19 lesion on five comprehensive datasets. The results show the superiority of the proposed prior model, which outperformed the baseline segmentation models in all the cases with significant margins. On av-erage, adding the prior model improved the Dice coefficient for the segmentation of lung nodules by 0.038, NSCLCs by 0.101, and Covid-19 lesions by 0.041. We conclude that the proposed NAA model pro-duces reliable prior knowledge regarding the lung pathologies, and integrating such knowledge into a prior segmentation network leads to more accurate delineations.
  •  
8.
  • Brismar, Torkel, et al. (författare)
  • Liver Vessel Enhancement by Gd-BOPTA and Gc-EOB-DTPA – a Comparison in Healthy Volunteers.
  • 2009
  • Ingår i: Acta Radiologica. - : Informa Healthcare. - 0284-1851 .- 1600-0455. ; 50:7, s. 709-715
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A thorough understanding of magnetic resonance (MR) contrast media dynamics makes it possible to choose the optimal contrast media for each investigation. Differences in visualizing hepatobiliary function between Gd-BOPTA and Gd-EOB-DTPA have previously been demonstrated, but less has been published regarding differences in liver vessel visualization.Purpose: To compare the liver vessel and liver parenchymal enhancement dynamics of Gd-BOPTA (MultiHance®) and Gd-EOB-DTPA (Primovist®). Material and Methods: The signal intensity of the liver parenchyma, the common hepatic artery, the middle hepatic vein, and a segmental branch of the right portal vein, was obtained in 10 healthy volunteers before contrast media administration, during arterial and portal venous phases, and 10, 20, 30, 40 and 130 minutes after intravenous contrast medium injection, but due to scanner limitations not during the hepatic venous phase. Results: Maximum enhancement of liver parenchyma was observed from the portal venous phase until 130 minutes after Gd-BOPTA administration and from 10 minutes to 40 minutes after Gd-EOB-DTPA. There was no difference in maximum enhancement of liver parenchyma between the two contrast media. When using Gd-BOPTA, the vascular contrast enhancement was still apparent 40 minutes after injection, but had vanished 10 minutes after Gd-EOB-DTPA injection. The maximum difference in signal intensity between the vessels and the liver parenchyma was significantly greater with Gd-BOPTA than with Gd-EOB-DTPA (p<0.0001). Conclusion: At the dosage used in this study Gd-BOPTA yields higher maximum enhancement of the hepatic artery, portal vein and middle hepatic vein during the arterial and the portal venous phase and during the delayed phases than Gd-EOB-DTPA does, whereas there is no difference in liver parenchymal enhancement between the two contrast agents.
  •  
9.
  • Brusini, Irene, et al. (författare)
  • Changes in brain architecture are consistent with altered fear processing in domestic rabbits
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:28, s. 7380-7385
  • Tidskriftsartikel (refereegranskat)abstract
    • The most characteristic feature of domestic animals is their change in behavior associated with selection for tameness. Here we show, using high-resolution brain magnetic resonance imaging in wild and domestic rabbits, that domestication reduced amygdala volume and enlarged medial prefrontal cortex volume, supporting that areas driving fear have lost volume while areas modulating negative affect have gained volume during domestication. In contrast to the localized gray matter alterations, white matter anisotropy was reduced in the corona radiata, corpus callosum, and the subcortical white matter. This suggests a compromised white matter structural integrity in projection and association fibers affecting both afferent and efferent neural flow, consistent with reduced neural processing. We propose that compared with their wild ancestors, domestic rabbits are less fearful and have an attenuated flight response because of these changes in brain architecture.
  •  
10.
  • Brusini, Irene (författare)
  • Methods for the analysis and characterization of brain morphology from MRI images
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Brain magnetic resonance imaging (MRI) is an imaging modality that produces detailed images of the brain without using any ionizing radiation. From a structural MRI scan, it is possible to extract morphological properties of different brain regions, such as their volume and shape. These measures can both allow a better understanding of how the brain changes due to multiple factors (e.g., environmental and pathological) and contribute to the identification of new imaging biomarkers of neurological and psychiatric diseases. The overall goal of the present thesis is to advance the knowledge on how brain MRI image processing can be effectively used to analyze and characterize brain structure.The first two works presented in this thesis are animal studies that primarily aim to use MRI data for analyzing differences between groups of interest. In Paper I, MRI scans from wild and domestic rabbits were processed to identify structural brain differences between these two groups. Domestication was found to significantly reshape brain structure in terms of both regional gray matter volume and white matter integrity. In Paper II, rat brain MRI scans were used to train a brain age prediction model. This model was then tested on both controls and a group of rats that underwent long-term environmental enrichment and dietary restriction. This healthy lifestyle intervention was shown to significantly affect the predicted brain age trajectories by slowing the rats' aging process compared to controls. Furthermore, brain age predicted on young adult rats was found to have a significant effect on survival.Papers III to V are human studies that propose deep learning-based methods for segmenting brain structures that can be severely affected by neurodegeneration. In particular, Papers III and IV focus on U-Net-based 2D segmentation of the corpus callosum (CC) in multiple sclerosis (MS) patients. In both studies, good segmentation accuracy was obtained and a significant correlation was found between CC area and the patient's level of cognitive and physical disability. Additionally, in Paper IV, shape analysis of the segmented CC revealed a significant association between disability and both CC thickness and bending angle. Conversely, in Paper V, a novel method for automatic segmentation of the hippocampus is proposed, which consists of embedding a statistical shape prior as context information into a U-Net-based framework. The inclusion of shape information was shown to significantly improve segmentation accuracy when testing the method on a new unseen cohort (i.e., different from the one used for training). Furthermore, good performance was observed across three different diagnostic groups (healthy controls, subjects with mild cognitive impairment and Alzheimer's patients) that were characterized by different levels of hippocampal atrophy.In summary, the studies presented in this thesis support the great value of MRI image analysis for the advancement of neuroscientific knowledge, and their contribution is mostly two-fold. First, by applying well-established processing methods on datasets that had not yet been explored in the literature, it was possible to characterize specific brain changes and disentangle relevant problems of a clinical or biological nature. Second, a technical contribution is provided by modifying and extending already-existing brain image processing methods to achieve good performance on new datasets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 32
Typ av publikation
tidskriftsartikel (29)
doktorsavhandling (2)
konferensbidrag (1)
Typ av innehåll
refereegranskat (29)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Smedby, Örjan, Profe ... (14)
Smedby, Örjan, 1956- (11)
Smedby, Örjan (7)
Brismar, Torkel (7)
Toma-Daşu, Iuliana (5)
Westman, Eric (3)
visa fler...
Klintström, Benjamin (3)
Persson, Anders (3)
Brismar, Torkel B. (3)
Kechagias, Stergios (2)
Lundberg, Peter (2)
Dahlqvist Leinhard, ... (2)
Pereira, Joana B (2)
Almer, Sven (2)
Dahlqvist Leinhard, ... (1)
Lundberg, Peter, 195 ... (1)
Karlsson, Anette (1)
Ferreira, Daniel (1)
Ferreira, D (1)
Wahlund, LO (1)
Westman, E (1)
Yang, Guang (1)
Johansson, J (1)
Romu, Thobias (1)
Borga, Magnus (1)
Fredriksson, M (1)
Larsson, Elna-Marie (1)
Ames, D (1)
Veronese, Mattia (1)
Axelsson, R (1)
Carlsson Tedgren, Ås ... (1)
af Buren, S (1)
Holstensson, M (1)
Blomgren, A (1)
Muehlboeck, JS (1)
Tran, T (1)
Nilsson, T (1)
Carneiro, Miguel (1)
Blanco-Aguiar, Jose ... (1)
Villafuerte, Rafael (1)
Ferrand, Nuno (1)
Andersson, Leif (1)
Poulakis, K. (1)
Volpe, Giovanni, 197 ... (1)
Axelsson, Rimma (1)
Sandström, Per (1)
Sandborg, Michael (1)
Larsson, Torbjörn (1)
Rafati, Nima (1)
Larsen, R (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (21)
Linköpings universitet (16)
Stockholms universitet (3)
Uppsala universitet (2)
Lunds universitet (2)
visa fler...
Göteborgs universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (32)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (22)
Teknik (9)
Naturvetenskap (5)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy