SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Smedby Örjan) ;lar1:(ki);pers:(Klintström Benjamin)"

Search: WFRF:(Smedby Örjan) > Karolinska Institutet > Klintström Benjamin

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Klintström, Eva, et al. (author)
  • Direct estimation of human trabecular bone stiffness using cone beam computed tomography
  • 2018
  • In: Oral surgery, oral medicine, oral pathology and oral radiology. - : ELSEVIER SCIENCE INC. - 2212-4403 .- 2212-4411. ; 126:1, s. 72-82
  • Journal article (peer-reviewed)abstract
    • Objectives. The aim of this study was to evaluate the possibility of estimating the biomechanical properties of trabecular bone through finite element simulations by using dental cone beam computed tomography data. Study Design. Fourteen human radius specimens were scanned in 3 cone beam computed tomography devices: 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan), NewTom 5 G (QR Verona, Verona, Italy), and Verity (Planmed, Helsinki, Finland). The imaging data were segmented by using 2 different methods. Stiffness (Young modulus), shear moduli, and the size and shape of the stiffness tensor were studied. Corresponding evaluations by using micro-CT were regarded as the reference standard. Results. The 3-D Accuitomo 80 (J. Morita MFG., Kyoto, Japan) showed good performance in estimating stiffness and shear moduli but was sensitive to the choice of segmentation method. Newtom 5 G (QR Verona, Verona, Italy) and Verity (Planmed, Helsinki, Finland) yielded good correlations, but they were not as strong as Accuitomo 80 U. Morita MFG., Kyoto, Japan). The cone beam computed tomography devices overestimated both stiffness and shear compared with the micro-CT estimations. Conclusions. Finite element-based calculations of biomechanics from cone beam computed tomography data are feasible, with strong correlations for the Accuitomo 80 scanner a. Morita MFG., Kyoto, Japan) combined with an appropriate segmentation method. Such measurements might be useful for predicting implant survival by in vivo estimations of bone properties.
  •  
2.
  • Klintström, Eva, et al. (author)
  • Predicting Trabecular Bone Stiffness from Clinical Cone-Beam CT and HR-pQCT Data; an In Vitro Study Using Finite Element Analysis
  • 2016
  • In: PLOS ONE. - : PLOS one. - 1932-6203. ; 11:8
  • Journal article (peer-reviewed)abstract
    • Stiffness and shear moduli of human trabecular bone may be analyzed in vivo by finite element (FE) analysis from image data obtained by clinical imaging equipment such as high resolution peripheral quantitative computed tomography (HR-pQCT). In clinical practice today, this is done in the peripheral skeleton like the wrist and heel. In this cadaveric bone study, fourteen bone specimens from the wrist were imaged by two dental cone beam computed tomography (CBCT) devices and one HR-pQCT device as well as by dual energy X-ray absorptiometry (DXA). Histomorphometric measurements from micro-CT data were used as gold standard. The image processing was done with an in-house developed code based on the automated region growing (ARG) algorithm. Evaluation of how well stiffness (Young's modulus E3) and minimum shear modulus from the 12, 13, or 23 could be predicted from the CBCT and HR-pQCT imaging data was studied and compared to FE analysis from the micro-CT imaging data. Strong correlations were found between the clinical machines and micro-CT regarding trabecular bone structure parameters, such as bone volume over total volume, trabecular thickness, trabecular number and trabecular nodes (varying from 0.79 to 0.96). The two CBCT devices as well as the HR-pQCT showed the ability to predict stiffness and shear, with adjusted R-2-values between 0.78 and 0.92, based on data derived through our in-house developed code based on the ARG algorithm. These findings indicate that clinically used CBCT may be a feasible method for clinical studies of bone structure and mechanical properties in future osteoporosis research.
  •  
3.
  • Klintström, Eva, et al. (author)
  • Trabecular bone histomorphometric measurements and contrast-to-noise ratio in CBCT
  • 2014
  • In: Dento-Maxillo-Facial Radiology. - : British Institute of Radiology. - 0250-832X .- 1476-542X. ; 43:8, s. 20140196-
  • Journal article (peer-reviewed)abstract
    • Objectives: The aim of this study was to evaluate how imaging parameters at clinical dental CBCT affect the accuracy in quantifying trabecular bone structures, contrast-to-noise ratio (CNR) and radiation dose.Methods: 15 radius samples were examined using CBCT (Accuitomo FPD; J. Morita Mfg., Kyoto, Japan). Nine imaging protocols were used, differing in current, voltage, rotation degree, voxel size, imaging area and rotation time. Radiation doses were measured using a KAP-meter. After segmentation, six bone structure parameters and CNR were quantified. Micro-CT images with an isotropic resolution of 20 microns were used as a gold standard.Results: Structure parameters obtained by CBCT were strongly correlated to those by micro CT, with correlation coefficients .0.90 for all studied parameters. Bone volume and trabecular thickness were not affected by changes in imaging parameters. Increased tube current from 5 to 8 mA, decreased isotropic voxel size from 125 to 80 microns and decreased rotation anglefrom 360° to 180° affected correlations for trabecular termini negatively. Decreasing rotation degree also weakened correlations for trabecular separation and trabecular number at 80 microns voxel size. Changes in the rotation degree and tube current affected CNR significantly. The radiation dose varied between 269 and 1284 mGy cm2.Conclusions: Trabecular bone structure can be accurately quantified by clinical dental CBCT in vitro, and the obtained structure parameters are strongly related to those obtained by micro CT. A fair CNR and strong correlations can be obtained with a low radiation dose, indicating the possibility for monitoring trabecular bone structure also in vivo.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view