SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Smedby Örjan) ;pers:(Tisell Anders)"

Sökning: WFRF:(Smedby Örjan) > Tisell Anders

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Blystad, Ida, et al. (författare)
  • Quantitative MRI for Analysis of Active Multiple Sclerosis Lesions without Gadolinium-Based Contrast Agent
  • 2016
  • Ingår i: American Journal of Neuroradiology. - : American Society of Neuroradiology (ASNR). - 0195-6108 .- 1936-959X. ; 37:1, s. 94-100
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: Contrast-enhancing MS lesions are important markers of active inflammation in the diagnostic work-up of MS and in disease monitoring with MR imaging. Because intravenous contrast agents involve an expense and a potential risk of adverse events, it would be desirable to identify active lesions without using a contrast agent. The purpose of this study was to evaluate whether pre-contrast injection tissue-relaxation rates and proton density of MS lesions, by using a new quantitative MR imaging sequence, can identify active lesions.MATERIALS AND METHODS: Forty-four patients with a clinical suspicion of MS were studied. MR imaging with a standard clinical MS protocol and a quantitative MR imaging sequence was performed at inclusion (baseline) and after 1 year. ROIs were placed in MS lesions, classified as nonenhancing or enhancing. Longitudinal and transverse relaxation rates, as well as proton density were obtained from the quantitative MR imaging sequence. Statistical analyses of ROI values were performed by using a mixed linear model, logistic regression, and receiver operating characteristic analysis.RESULTS: Enhancing lesions had a significantly (P < .001) higher mean longitudinal relaxation rate (1.22 ± 0.36 versus 0.89 ± 0.24), a higher mean transverse relaxation rate (9.8 ± 2.6 versus 7.4 ± 1.9), and a lower mean proton density (77 ± 11.2 versus 90 ± 8.4) than nonenhancing lesions. An area under the receiver operating characteristic curve value of 0.832 was obtained.CONCLUSIONS: Contrast-enhancing MS lesions often have proton density and relaxation times that differ from those in nonenhancing lesions, with lower proton density and shorter relaxation times in enhancing lesions compared with nonenhancing lesions.
  •  
3.
  • Blystad, Ida, 1972-, et al. (författare)
  • Quantitative MRI for analysis of peritumoral edema in malignant gliomas
  • 2017
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose Damage to the blood-brain barrier with subsequent contrast enhancement is a hallmark of glioblastoma. Non-enhancing tumor invasion into the peritumoral edema is, however, not usually visible on conventional magnetic resonance imaging. New quantitative techniques using relaxometry offer additional information about tissue properties. The aim of this study was to evaluate longitudinal relaxation R-1, transverse relaxation R-2, and proton density in the peritumoral edema in a group of patients with malignant glioma before surgery to assess whether relaxometry can detect changes not visible on conventional images. Methods In a prospective study, 24 patients with suspected malignant glioma were examined before surgery. A standard MRI protocol was used with the addition of a quantitative MR method (MAGIC), which measured R-1, R-2, and proton density. The diagnosis of malignant glioma was confirmed after biopsy/surgery. In 19 patients synthetic MR images were then created from the MAGIC scan, and ROIs were placed in the peritumoral edema to obtain the quantitative values. Dynamic susceptibility contrast perfusion was used to obtain cerebral blood volume (rCBV) data of the peritumoral edema. Voxel-based statistical analysis was performed using a mixed linear model. Results R-1, R-2, and rCBV decrease with increasing distance from the contrast-enhancing part of the tumor. There is a significant increase in R1 gradient after contrast agent injection (P<.0001). There is a heterogeneous pattern of relaxation values in the peritumoral edema adjacent to the contrast-enhancing part of the tumor. Conclusion Quantitative analysis with relaxometry of peritumoral edema in malignant gliomas detects tissue changes not visualized on conventional MR images. The finding of decreasing R-1 and R-2 means shorter relaxation times closer to the tumor, which could reflect tumor invasion into the peritumoral edema. However, these findings need to be validated in the future.
  •  
4.
  •  
5.
  • Blystad, Ida, 1972-, et al. (författare)
  • Quantitative MRI using relaxometry in malignant gliomas detects contrast enhancement in peritumoral oedema
  • 2020
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Malignant gliomas are primary brain tumours with an infiltrative growth pattern, often with contrast enhancement on magnetic resonance imaging (MRI). However, it is well known that tumour infiltration extends beyond the visible contrast enhancement. The aim of this study was to investigate if there is contrast enhancement not detected visually in the peritumoral oedema of malignant gliomas by using relaxometry with synthetic MRI. 25 patients who had brain tumours with a radiological appearance of malignant glioma were prospectively included. A quantitative MR-sequence measuring longitudinal relaxation (R-1), transverse relaxation (R-2) and proton density (PD), was added to the standard MRI protocol before surgery. Five patients were excluded, and in 20 patients, synthetic MR images were created from the quantitative scans. Manual regions of interest (ROIs) outlined the visibly contrast-enhancing border of the tumours and the peritumoral area. Contrast enhancement was quantified by subtraction of native images from post GD-images, creating an R-1-difference-map. The quantitative R-1-difference-maps showed significant contrast enhancement in the peritumoral area (0.047) compared to normal appearing white matter (0.032), p = 0.048. Relaxometry detects contrast enhancement in the peritumoral area of malignant gliomas. This could represent infiltrative tumour growth.
  •  
6.
  •  
7.
  • Tisell, Anders, et al. (författare)
  • Increased Concentrations of Glutamate and Glutamine in Normal Appearing White Matter of Patients with Multiple Sclerosis and Normal MR Imaging Brain Scans
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:4
  • Tidskriftsartikel (refereegranskat)abstract
    • In Multiple Sclerosis (MS) the relationship between disease process in normal-appearing white matter (NAWM) and the development of white matter lesions is not well understood. In this study we used single voxel proton ‘Quantitative Magnetic Resonance Spectroscopy’ (qMRS) to characterize the NAWM and thalamus both in atypical ‘Clinically Definite MS’ (CDMS) patients, MRIneg (N = 15) with very few lesions (two or fewer lesions), and in typical CDMS patients, MRIpos (N = 20) with lesions, in comparison with healthy control subjects (N = 20). In addition, the metabolite concentrations were also correlated with extent of brain atrophy measured using Brain Parenchymal Fraction (BPF) and severity of the disease measured using ‘Multiple Sclerosis Severity Score’ (MSSS). Elevated concentrations of glutamate and glutamine (Glx) were observed in both MS groups (MRIneg 8.12 mM, p<0.001 and MRIpos 7.96 mM p<0.001) compared to controls, 6.76 mM. Linear regressions of Glx and total creatine (tCr) with MSSS were 0.16±0.06 mM/MSSS (p = 0.02) for Glx and 0.06±0.03 mM/MSSS (p = 0.04) for tCr, respectively. Moreover, linear regressions of tCr and myo-Inositol (mIns) with BPF were −6.22±1.63 mM/BPF (p<0.001) for tCr and −7.71±2.43 mM/BPF (p = 0.003) for mIns. Furthermore, the MRIpos patients had lower N-acetylaspartate and N-acetylaspartate-glutamate (tNA) and elevated mIns concentrations in NAWM compared to both controls (tNA: p = 0.04 mIns p<0.001) and MRIneg (tNA: p = 0.03 , mIns: p = 0.002). The results suggest that Glx may be an important marker for pathology in non-lesional white matter in MS. Moreover, Glx is related to the severity of MS independent of number of lesions in the patient. In contrast, increased glial density indicated by increased mIns and decreased neuronal density indicated by the decreased tNA, were only observed in NAWM of typical CDMS patients with white matter lesions.
  •  
8.
  • Tisell, Anders (författare)
  • The Non-Invasive Brain Biopsy : Implementation and Application of Quantitative Magnetic Resonance Spectroscopy on Healthy and Diseased Human Brain
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Introduction: In this thesis, one of the major objectives was to implement a method for (absolute) quantitative magnetic resonance spectroscopy (qMRS) of the human brain, intended for clinical use. The implemented method was based on standard spatially selective MRS sequences. The tissue water was used as an internal reference, which was calibrated using whole brain quantitative magnetic resonance imaging (qMRI). The second objective was to apply the method in clinical neuroimaging investigation, of different disease processes in the human brain.Materials and Methods: In total, 158 subjects were included and 507 MRS measurements (330 in white matter and 177 in the thalamus) were acquired.In a cross-sectional study of multiple sclerosis (MS), 35 ‘clinically definite MS’ (CDMS) patients were included, of which 15 were atypical CDMS patients with a very low number of white matter lesions (two or fewer), and 20 were typical CDMS patients with white matter lesions (three or more) were included. The metabolite concentrations in normal appearing white matter (NAWM) and the thalamus were assessed using the qMRS method developed in this thesis, and the brain parenchymal fraction (BPF) was calculated from the qMRI data. A cohort of 27 CDMS patients were then treated with Natalizumab and examined both at baseline, and after one year of treatment. Both qMRS and CSF samples for the purpose of assessing intrathecal inflammation were obtained. In addition, the frontal deep white matter (FDWM) and the thalamus were investigated in 20 idiopathic normal pressure hydrocephalus (iNPH) patients using qMRS. Finally, the left thalamus of 14 Kleine-Levin Syndrome (KLS) patients were examined using both qMRS and functional MRI (fMRI) of neurological activation of the left thalamus during a working memory test. Moreover, 63 healthy subjects were included as controls for this work.Results: A quantitative MRS method based on water referencing was successfully developed, implemented, and evaluated at 1.5 T. Both healthy subjects and MS patients showed a positive correlation between the concentrations of total Creatine (tCr) and myo Inositol (mIns) and age, and also a negative correlation with BPF were observed. Glutamate and Glutamine (Glx) levels were elevated for all MS patient groups compared to healthy controls. In contrast, lower concentrations of total N-acetyl aspartate and N-acetyl aspartate glutamate (tNA) and higher mIns concentrations in NAWM were only observed in MS patients that had developed white matter lesions. Moreover, the change in concentrations of tCr and total Choline (tCho) in MS patients during Natalizumab-treatment were positively correlated with markers of intrathecal inflammation. The iNPH patients had lower tNA and N-acetyl aspartate (NAA) concentrations in the thalamus compared to the controls. In addition, the NAA concentrations in the left thalamus were inversely correlated to the fMRI activation in the left thalamus during the working memory test in KLS patients.Discussion: The calculated calibration factors were in good agreement with the results found in the literature, indicating that the calibration factors were accurate.The observed elevated Glx concentration in MS could be due to increased concentrations of glutamate (Glu), which is neurotoxic at high concentrations, thus the elevated Glx could be linked to the clinically observed neurodegeneration in MS both in patients that have developed lesions and in atypical patients that do not develop any (or extremely few) lesions.Both tCr and mIns can be used as glia markers, thus the correlations of tCr and mIns concentrations with both age and BPF indicates that the local glia cell density, or tissue fraction, increases with age and atrophy. Moreover, the higher mIns concentrations in the NAWM of MS patients with a substantial white matter lesion load indicate that the glia tissue amount in NAWM is increased in MS patients that develop lesions. NAA is neuronal-specific, thus the lower tNA concentrations indicate that the neurone concentration is lower in the NAWM of MS patients that develop MS lesions. The lack of correlation between tNA with age and BPF in combination with the presence of correlation between tCr and mIns with both age and BPF, might be explained using a model for neurodegeneration. In which, there is a higher neurone loss compared to the glia loss. However, the lost tissue is compensated by compression of the tissue, which keeps the density of neurones more or less constant and the density of glia increased.The low concentration levels of the neuronal marker NAA in the thalamus of the iNPH patients indicates that the basal ganglia-thalamic-subcortical frontal circuits are damage or at least strongly modulated in the thalamus.The correlation between strong activation in left thalamus during a working memory test with the neuronal marker NAA indicate that the KLS patients that have low neuronal concentration also needed to utilise the working memory circuitry more heavily in order to perform the task as healthy subjects.Conclusion: It is possible to use qMRI for accurate and robust determination of qMRS in clinical practice, even at 1.5 T field strength. The tGlx concentration may be an important marker for pathology in the nonlesional white matter of MS-patients. The increased glia and loss of neurones in the NAWM are associated with the formation of white matter lesions.
  •  
9.
  • West, Janne, et al. (författare)
  • Normal Appearing and Diffusely Abnormal White Matter in Patients with Multiple Sclerosis, Assessed with Quantitative MR : Optimization for clinical usage
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 9:4, s. e95161-
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Magnetic Resonance Imaging is a sensitive technique for detecting white matter (WM) MS lesions, but the relation with clinical disability is low. Because of this, changes in both ‘normal appearing white matter’ (NAWM) and ‘diffusely abnormal white matter’ (DAWM) have been of interest in recent years. MR techniques, including quantitative magnetic resonance imaging (qMRI) and quantitative magnetic resonance spectroscopy (qMRS), have been developed in order to detect and  quantify such changes.In this study, a combination of qMRI and qMRS was used to investigate NAWM and DAWM in typical MS patients and in MS patients with low number of WM lesions. Patient data were compared to ‘normal white matter’ (NWM) in healthy controls.Methods: QMRI and qMRS measurements were performed on a 1.5T Philips MR-scanner. 35 patients with clinically definite MS and 20 healthy controls were included. Fifteen of the patients showed few WM lesions (‘MRIneg‘) and 20 showed radiologically typical findings (‘MRIpos’). QMRI properties were determined in ROIs of NAWM, DAWM and WM lesions in the MS groups and of NWM in controls. Descriptive statistical analysis and comparisons were performed. Correlations were calculated between qMRI measurements and (1) clinical parameters and (2) WM metabolite concentrations. Regression analyses were performed with brain parenchyma fraction and MSSS.Results: NAWM in the MRIneg group was significantly different from NAWM in the MRIpos group and NWM. In addition, R1 and R2 of NAWM in the MRIpos group correlated negatively with EDSS and MSSS. DAWM was significantly different from NWM, but similar in the two MS groups. N-acetyl aspartate correlated negatively with R1 and R2 in MRIneg. Finally, R2 of DAWM was associated with BPF.Conclusions: Changes in NAWM and DAWM are independent pathological entities in the disease. Combined qMRI and qMRS measurements of NAWM and DAWM provide important markers for disease status.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy