SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Smith Ulf 1943) ;lar1:(ki)"

Sökning: WFRF:(Smith Ulf 1943) > Karolinska Institutet

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Folkersen, Lasse, et al. (författare)
  • Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals.
  • 2020
  • Ingår i: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 2:10, s. 1135-1148
  • Tidskriftsartikel (refereegranskat)abstract
    • Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health.
  •  
2.
  • Arner, P., et al. (författare)
  • Genetic predisposition for Type 2 diabetes, but not for overweight/obesity, is associated with a restricted adipogenesis
  • 2011
  • Ingår i: PLoS One. - : Public Library of Science (PLoS). - 1932-6203. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Development of Type 2 diabetes, like obesity, is promoted by a genetic predisposition. Although several genetic variants have been identified they only account for a small proportion of risk. We have asked if genetic risk is associated with abnormalities in storing excess lipids in the abdominal subcutaneous adipose tissue. METHODOLOGY/PRINCIPAL FINDINGS: We recruited 164 lean and 500 overweight/obese individuals with or without a genetic predisposition for Type 2 diabetes or obesity. Adipose cell size was measured in biopsies from the abdominal adipose tissue as well as insulin sensitivity (HOMA index), HDL-cholesterol and Apo AI and Apo B. 166 additional non-obese individuals with a genetic predisposition for Type 2 diabetes underwent a euglycemic hyperinsulinemic clamp to measure insulin sensitivity. Genetic predisposition for Type 2 diabetes, but not for overweight/obesity, was associated with inappropriate expansion of the adipose cells, reduced insulin sensitivity and a more proatherogenic lipid profile in non-obese individuals. However, obesity per se induced a similar expansion of adipose cells and dysmetabolic state irrespective of genetic predisposition. CONCLUSIONS/SIGNIFICANCE: Genetic predisposition for Type 2 diabetes, but not obesity, is associated with an impaired ability to recruit new adipose cells to store excess lipids in the subcutaneous adipose tissue, thereby promoting ectopic lipid deposition. This becomes particularly evident in non-obese individuals since obesity per se promotes a dysmetabolic state irrespective of genetic predisposition. These results identify a novel susceptibility factor making individuals with a genetic predisposition for Type 2 diabetes particularly sensitive to the environment and caloric excess.
  •  
3.
  • Cansby, Emmelie, 1984, et al. (författare)
  • Increased expression of STK25 leads to impaired glucose utilization and insulin sensitivity in mice challenged with a high-fat diet.
  • 2013
  • Ingår i: FASEB journal : official publication of the Federation of American Societies for Experimental Biology. - : Wiley. - 1530-6860. ; 27:9, s. 3660-3671
  • Tidskriftsartikel (refereegranskat)abstract
    • Partial depletion of serine/threonine protein kinase 25 (STK25), a member of the Ste20 superfamily of kinases, increases lipid oxidation and glucose uptake in rodent myoblasts. Here we show that transgenic mice overexpressing STK25, when challenged with a high-fat diet, develop reduced glucose tolerance and insulin sensitivity compared to wild-type siblings, as evidenced by impairment in glucose and insulin tolerance tests as well as in euglycemic-hyperinsulinemic clamp studies. The fasting plasma insulin concentration was elevated in Stk25 transgenic mice compared to wild-type littermates (4.9±0.8 vs. 2.6±0.4 ng/ml after 17 wk on high-fat diet, P<0.05). Overexpression of STK25 decreased energy expenditure during the dark phase of observation (P<0.05), despite increased spontaneous activity. The oxidative capacity of skeletal muscle of transgenic carriers was reduced, as evidenced by altered expression of Cpt1, Acox1, and ACC. Hepatic triglycerides and glycogen were elevated (1.6- and 1.4-fold, respectively; P<0.05) and expression of key enzymes regulating lipogenesis (Fasn), glycogen synthesis (Gck), and gluconeogenesis (G6pc, Fbp1) was increased in the liver of the transgenic mice. Our findings suggest that overexpression of STK25 in conditions of excess dietary fuels associates with a shift in the metabolic balance in peripheral tissues from lipid oxidation to storage, leading to a systemic insulin resistance.-Cansby, E., Amrutkar, M., Mannerås Holm, L., Nerstedt, A., Reyahi, A., Stenfeldt, E., Borén, J., Carlsson, P., Smith, U., Zierath, J.R., Mahlapuu, M. Increased expression of STK25 leads to impaired glucose utilization and insulin sensitivity in mice challenged with a high-fat diet.
  •  
4.
  • Dimas, Antigone S, et al. (författare)
  • Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity.
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 63:6, s. 2158-2171
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with established type 2 diabetes display both beta-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci and indices of proinsulin processing, insulin secretion and insulin sensitivity. We included data from up to 58,614 non-diabetic subjects with basal measures, and 17,327 with dynamic measures. We employed additive genetic models with adjustment for sex, age and BMI, followed by fixed-effects inverse variance meta-analyses. Cluster analyses grouped risk loci into five major categories based on their relationship to these continuous glycemic phenotypes. The first cluster (PPARG, KLF14, IRS1, GCKR) was characterized by primary effects on insulin sensitivity. The second (MTNR1B, GCK) featured risk alleles associated with reduced insulin secretion and fasting hyperglycemia. ARAP1 constituted a third cluster characterized by defects in insulin processing. A fourth cluster (including TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B) was defined by loci influencing insulin processing and secretion without detectable change in fasting glucose. The final group contained twenty risk loci with no clear-cut associations to continuous glycemic traits. By assembling extensive data on continuous glycemic traits, we have exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition.
  •  
5.
  • Hribal, M. L., et al. (författare)
  • Glucose tolerance, insulin sensitivity and insulin release in European non-diabetic carriers of a polymorphism upstream of CDKN2A and CDKN2B
  • 2011
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 54:4, s. 795-802
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: The aim of this study was to investigate the association of the rs10811661 polymorphism near the CDKN2B/CDKN2A genes with glucose tolerance, insulin sensitivity and insulin release in three samples of white people with European ancestry. METHODS: Sample 1 comprised 845 non-diabetic offspring of type 2 diabetes patients recruited in five European centres participating in the EUGENE2 study. Samples 2 and 3 comprised, respectively, 864 and 524 Italian non-diabetic participants. All individuals underwent an OGTT. Screening for the rs10811661 polymorphism was performed using a TaqMan allelic discrimination assay. RESULTS: The rs10811661 polymorphism did not show a significant association with age, BMI and insulin sensitivity. Participants carrying the TT genotype showed a significant reduction in insulin release, measured by an OGTT-derived index, compared with carriers of the C allele, in the three samples. When these results were pooled with those of three published studies, and meta-analysed with a random-effects model, the T allele was significantly associated with reduced insulin secretion (-35.09 [95% CI 14.68-55.52], p = 0.0008 for CC+CT vs TT; and -29.45 [95% CI 9.51-49.38], p = 0.0038, for the additive model). In addition, in our three samples, participants carrying the TT genotype exhibited an increased risk for impaired glucose tolerance (IGT) compared with carriers of the C allele (OR 1.55 [95% CI 1.20-1.95] for the meta-analysis of the three samples). CONCLUSIONS/INTERPRETATION: Our data, together with the meta-analysis of previously published studies, show that the rs10811661 polymorphism is associated with impaired insulin release and IGT, suggesting that this variant may contribute to type 2 diabetes by affecting beta cell function.
  •  
6.
  • Klaric, Lucija, et al. (författare)
  • Mendelian randomisation identifies alternative splicing of the FAS death receptor as a mediator of severe COVID-19.
  • 2021
  • Ingår i: medRxiv : the preprint server for health sciences. - : Cold Spring Harbor Laboratory. ; , s. 1-28
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Severe COVID-19 is characterised by immunopathology and epithelial injury. Proteomic studies have identified circulating proteins that are biomarkers of severe COVID-19, but cannot distinguish correlation from causation. To address this, we performed Mendelian randomisation (MR) to identify proteins that mediate severe COVID-19. Using protein quantitative trait loci (pQTL) data from the SCALLOP consortium, involving meta-analysis of up to 26,494 individuals, and COVID-19 genome-wide association data from the Host Genetics Initiative, we performed MR for 157 COVID-19 severity protein biomarkers. We identified significant MR results for five proteins: FAS, TNFRSF10A, CCL2, EPHB4 and LGALS9. Further evaluation of these candidates using sensitivity analyses and colocalization testing provided strong evidence to implicate the apoptosis-associated cytokine receptor FAS as a causal mediator of severe COVID-19. This effect was specific to severe disease. Using RNA-seq data from 4,778 individuals, we demonstrate that the pQTL at the FAS locus results from genetically influenced alternate splicing causing skipping of exon 6. We show that the risk allele for very severe COVID-19 increases the proportion of transcripts lacking exon 6, and thereby increases soluble FAS. Soluble FAS acts as a decoy receptor for FAS-ligand, inhibiting apoptosis induced through membrane-bound FAS. In summary, we demonstrate a novel genetic mechanism that contributes to risk of severe of COVID-19, highlighting a pathway that may be a promising therapeutic target.
  •  
7.
  • Laakso, M., et al. (författare)
  • Insulin sensitivity, insulin release and glucagon-like peptide-1 levels in persons with impaired fasting glucose and/or impaired glucose tolerance in the EUGENE2 study
  • 2008
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 51:3, s. 502-11
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: We examined the phenotype of individuals with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT) with regard to insulin release and insulin resistance. METHODS: Non-diabetic offspring (n=874; mean age 40+/-10.4 years; BMI 26.6+/-4.9 kg/m(2)) of type 2 diabetic patients from five different European Centres (Denmark, Finland, Germany, Italy and Sweden) were examined with regard to insulin sensitivity (euglycaemic clamps), insulin release (IVGTT) and glucose tolerance (OGTT). The levels of glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) were measured during the OGTT in 278 individuals. RESULTS: Normal glucose tolerance was found in 634 participants, while 110 had isolated IFG, 86 had isolated IGT and 44 had both IFG and IGT, i.e. about 28% had a form of reduced glucose tolerance. Participants with isolated IFG had lower glucose-corrected first-phase (0-10 min) and higher second-phase insulin release (10-60 min) during the IVGTT, while insulin sensitivity was reduced in all groups with abnormal glucose tolerance. Similarly, GLP-1 but not GIP levels were reduced in individuals with abnormal glucose tolerance. CONCLUSIONS/INTERPRETATION: The primary mechanism leading to hyperglycaemia in participants with isolated IFG is likely to be impaired basal and first-phase insulin secretion, whereas in isolated IGT the primary mechanism leading to postglucose load hyperglycaemia is insulin resistance. Reduced GLP-1 levels were seen in all groups with abnormal glucose tolerance and were unrelated to the insulin release pattern during an IVGTT.
  •  
8.
  • Lee, SangWook, et al. (författare)
  • Network analyses identify liver-specific targets for treating liver diseases
  • 2017
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 13:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed integrative network analyses to identify targets that can be used for effectively treating liver diseases with minimal side effects. We first generated co-expression networks (CNs) for 46 human tissues and liver cancer to explore the functional relationships between genes and examined the overlap between functional and physical interactions. Since increased de novo lipogenesis is a characteristic of nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC), we investigated the liver-specific genes co-expressed with fatty acid synthase (FASN). CN analyses predicted that inhibition of these liver-specific genes decreases FASN expression. Experiments in human cancer cell lines, mouse liver samples, and primary human hepatocytes validated our predictions by demonstrating functional relationships between these liver genes, and showing that their inhibition decreases cell growth and liver fat content. In conclusion, we identified liver-specific genes linked to NAFLD pathogenesis, such as pyruvate kinase liver and red blood cell (PKLR), or to HCC pathogenesis, such as PKLR, patatin-like phospholipase domain containing 3 (PNPLA3), and proprotein convertase subtilisin/kexin type 9 (PCSK9), all of which are potential targets for drug development.
  •  
9.
  • Sandqvist, Madelene, 1974, et al. (författare)
  • Low adipocyte IRS-1 protein expression is associated with an increased arterial stiffness in non-diabetic males
  • 2005
  • Ingår i: Atherosclerosis. - : Elsevier BV. - 0021-9150 .- 1879-1484. ; 180:1, s. 119-25
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Low adipocyte IRS-1 protein expression is a biomarker for insulin resistance and early atherosclerosis. However, whether IRS-1 protein expression is related to systemic arterial stiffness, is unknown. METHODS AND RESULTS: Ten non-diabetic male subjects with low adipocyte IRS-1 protein expression (LIRS) were matched with 10 non-diabetic males with normal IRS-1 protein expression (NIRS). Augmentation index (AIx) and time for reflection of pulse wave (Tr) were studied with pulse wave analysis, both in the fasting state and during a euglycemic hyperinsulinemic clamp. The LIRS-group showed an increased fasting insulin concentration (fP-insulin 71+/-4 pmol/L versus 58+/-5 pmol/L; p=0.02 (mean+/-S.E.)), whereas glucose disposal rate during the clamp (8.7+/-0.8 mg/kg LBM/min versus 10.3+/-1.3 mg/kg LBM/min; n.s.) did not differ significantly. Blood pressure, lipid parameters, adiponectin, endothelin-1 and CRP concentrations were similar. However, in the basal state, AIx was increased (129+/-4% versus 116+/-2%; p<0.02) and Tr was decreased (150+/-3 ms versus 171+/-5 ms; p<0.01), suggesting stiffer vessels in the LIRS-group. The LIRS-group exhibited an attenuated AIx response to hyperinsulinemia compared to the NIRS-group. CONCLUSIONS: The data suggest that non-obese non-diabetic men with a low adipocyte IRS-1 protein expression have an increased systemic arterial stiffness.
  •  
10.
  • Smith, Ulf, 1943, et al. (författare)
  • Cellular senescence and its role in white adipose tissue
  • 2021
  • Ingår i: International Journal of Obesity. - : Springer Science and Business Media LLC. - 0307-0565 .- 1476-5497. ; 45, s. 934-943
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell senescence is defined as a state of irreversible cell cycle arrest combined with DNA damage and the induction of a senescence-associated secretory phenotype (SASP). This includes increased secretion of many inflammatory agents, proteases, miRNA's, and others. Cell senescence has been widely studied in oncogenesis and has generally been considered to be protective, due to cell cycle arrest and the inhibition of proliferation. Cell senescence is also associated with ageing and extensive experimental data support its role in generating the ageing-associated phenotype. Senescent cells can also influence proximal "healthy" cells through SASPs and, e.g., inhibit normal development of progenitor/stem cells, thereby preventing tissue replacement of dying cells and reducing organ functions. Recent evidence demonstrates that SASPs may also play important roles in several chronic diseases including diabetes and cardiovascular disease. White adipose tissue (WAT) cells are highly susceptible to becoming senescent both with ageing but also with obesity and type 2 diabetes, independently of chronological age. WAT senescence is associated with inappropriate expansion (hypertrophy) of adipocytes, insulin resistance, and dyslipidemia. Major efforts have been made to identify approaches to delete senescent cells including the use of "senolytic" compounds. The most established senolytic treatment to date is the combination of dasatinib, an antagonist of the SRC family of kinases, and the antioxidant quercetin. This combination reduces cell senescence and improves chronic disorders in experimental animal models. Although only small and short-term studies have been performed in man, no severe adverse effects have been reported. Hopefully, these or other senolytic agents may provide novel ways to prevent and treat different chronic diseases in man. Here we review the current knowledge on cellular senescence in both murine and human studies. We also discuss the pathophysiological role of this process and the potential therapeutic relevance of targeting senescence selectively in WAT.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (11)
annan publikation (1)
Typ av innehåll
refereegranskat (11)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Jansson, Per-Anders, ... (4)
Hammarstedt, Ann, 19 ... (4)
Lind, Lars (3)
Landén, Mikael, 1966 (2)
Borén, Jan, 1963 (2)
Chen, Yan (2)
visa fler...
Wareham, Nicholas J. (2)
Engström, Gunnar (1)
Li, Q. (1)
Gyllensten, Ulf B. (1)
Elmståhl, Sölve (1)
Karlsson, Magnus (1)
Nielsen, Jens B, 196 ... (1)
Ahren, Bo (1)
Uhlén, Mathias (1)
Lee, Sunjae (1)
Bäckhed, Fredrik, 19 ... (1)
Vandenput, Liesbeth, ... (1)
Lorentzon, Mattias, ... (1)
Bergen, Sarah E (1)
Walker, M (1)
Magnusson, Martin (1)
Zhang, C. (1)
Wang, Qin (1)
Ryden, M (1)
Arner, P (1)
Melander, Olle (1)
Nilsson, Peter M (1)
Smith, J Gustav (1)
Smith, Gustav (1)
Davey Smith, George (1)
Sjögren, Marketa (1)
Campbell, Harry (1)
Zhang, Weidong (1)
Mardinoglu, Adil, 19 ... (1)
Ohlsson, Claes, 1965 (1)
Nilsson, Jan (1)
Sundström, Johan, Pr ... (1)
Franks, Paul W. (1)
Suhre, Karsten (1)
Hansson, Oskar (1)
Caidahl, Kenneth, 19 ... (1)
Stancáková, Alena (1)
Kuusisto, Johanna (1)
Laakso, Markku (1)
McCarthy, Mark I (1)
Grarup, Niels (1)
Pedersen, Oluf (1)
Orho-Melander, Marju (1)
Hansen, Torben (1)
visa färre...
Lärosäte
Göteborgs universitet (12)
Uppsala universitet (4)
Lunds universitet (4)
Kungliga Tekniska Högskolan (1)
Chalmers tekniska högskola (1)
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (12)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy