SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sommer J) ;pers:(Menten K.M.)"

Sökning: WFRF:(Sommer J) > Menten K.M.

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Basu, K., et al. (författare)
  • Non-parametric modeling of the intra-cluster gas using APEX-SZ bolometer imaging data
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 519:Article Number: A29
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to demonstrate the usability of mm-wavelength imaging data obtained from the APEX-SZ bolometer array to derive the radial temperature profile of the hot intra-cluster gas out to radius r(500) and beyond. The goal is to study the physical properties of the intra-cluster gas by using a non-parametric de-projection method that is, aside from the assumption of spherical symmetry, free from modeling bias. Methods. We use publicly available X-ray spectroscopic-imaging data in the 0.7-2 keV energy band from the XMM-Newton observatory and our Sunyaev-Zel'dovich Effect (SZE) imaging data from the APEX-SZ experiment at 150 GHz to de-project the density and temperature profiles for a well-studied relaxed cluster, Abell 2204. We derive the gas density, temperature and entropy profiles assuming spherical symmetry, and obtain the total mass profile under the assumption of hydrostatic equilibrium. For comparison with X-ray spectroscopic temperature models, a re-analysis of recent Chandra observation is done with the latest calibration updates. We compare the results with that from an unrelaxed cluster, Abell 2163, to illustrate some differences between relaxed and merging systems. Results. Using the non-parametric modeling, we demonstrate a decrease of gas temperature in the cluster outskirts, and also measure gas entropy profiles, both of which are done for the first time independently of X-ray spectroscopy using the SZE and X-ray imaging data. The gas entropy measurement in the central 100 kpc shows the usability of APEX-SZ data for inferring cluster dynamical states with this method. The contribution of the SZE systematic uncertainties in measuring T-e at large radii is shown to be small compared to XMM-Newton and Chandra systematic spectroscopic errors. The total mass profile obtained using the hydrostatic equilibrium assumption is in agreement with the published X-ray and weak lensing results; the upper limit on M-200 derived from the non-parametric method is consistent with the NFW model prediction from weak lensing analysis.
  •  
2.
  • Bender, A. N., et al. (författare)
  • Galaxy cluster scaling relations measured with APEX-SZ
  • 2016
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 460:4, s. 3432-3446
  • Tidskriftsartikel (refereegranskat)abstract
    • We present thermal Sunyaev-Zel'dovich effect (SZE) measurements for 42 galaxy clusters observed at 150 GHz with the APEX-SZ experiment. For each cluster, we model the pressure profile and calculate the integrated Comptonization Y to estimate the total thermal energy of the intraclustermedium (ICM). We compare the measured Y values to X-ray observables of the ICM from the literature (cluster gas mass M-gas, temperature T-X, and Y-X = MgasTX) that relate to total cluster mass. We measure power-law scaling relations, including an intrinsic scatter, between the SZE and X-ray observables for three subsamples within the set of 42 clusters that have uniform X-ray analysis in the literature. We observe that differences between these X-ray analyses introduce significant variance into the measured scaling relations, particularly affecting the normalization. For all three subsamples, we find results consistent with a selfsimilarmodel of cluster evolution dominated by gravitational effects. Comparing to predictions from numerical simulations, these scaling relations prefer models that include cooling and feedback in the ICM. Lastly, we measure an intrinsic scatter of similar to 28 per cent in the Y - Y-X scaling relation for all three subsamples.
  •  
3.
  • Schwan, D., et al. (författare)
  • Invited Article: Millimeter-wave bolometer array receiver for the Atacama pathfinder experiment Sunyaev-Zel'dovich (APEX-SZ) instrument
  • 2011
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 1089-7623 .- 0034-6748. ; 82:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atacama pathfinder experiment Sunyaev-Zel'dovich (APEX-SZ) instrument is a millimeter-wave cryogenic receiver designed to observe galaxy clusters via the Sunyaev-Zel'dovich effect from the 12 m APEX telescope on the Atacama plateau in Chile. The receiver contains a focal plane of 280 superconducting transition-edge sensor (TES) bolometers instrumented with a frequency-domain multiplexed readout system. The bolometers are cooled to 280 mK via a three-stage helium sorption refrigerator and a mechanical pulse-tube cooler. Three warm mirrors, two 4 K lenses, and a horn array couple the TES bolometers to the telescope. APEX-SZ observes in a single frequency band at 150 GHz with 1' angular resolution and a 22' field-of-view, all well suited for cluster mapping. The APEX-SZ receiver has played a key role in the introduction of several new technologies including TES bolometers, the frequency-domain multiplexed readout, and the use of a pulse-tube cooler with bolometers. As a result of these new technologies, the instrument has a higher instantaneous sensitivity and covers a larger field-of-view than earlier generations of Sunyaev-Zel'dovich instruments. The TES bolometers have a median sensitivity of 890 mu K(CMB)root s (NEy of 3.5 x 10(-4) root s). We have also demonstrated upgraded detectors with improved sensitivity of 530 mu K(CMB) root s (NEy of 2.2 x 10(-4) root s). Since its commissioning in April 2007, APEX-SZ has been used to map 48 clusters. We describe the design of the receiver and its performance when installed on the APEX telescope.
  •  
4.
  • Nagarajan, A., et al. (författare)
  • Weak-lensing mass calibration of the Sunyaev-Zel'dovich effect using APEX-SZ galaxy clusters
  • 2019
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 488:2, s. 1728-1759
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of galaxy clusters as precision cosmological probes relies on an accurate determination of their masses. However, inferring the relationship between cluster mass and observables from direct observations is difficult and prone to sample selection biases. In this work, we use weak lensing as the best possible proxy for cluster mass to calibrate the Sunyaev-Zel'dovich (SZ) effect measurements from the APEX-SZ experiment. For a well-defined (ROSAT) X-ray complete cluster sample, we calibrate the integrated Comptonization parameter, Y-SZ, to the weak-lensing derived total cluster mass, M-500. We employ a novel Bayesian approach to account for the selection effects by jointly fitting both the SZ Comptonization, Y-SZ-M-500, and the X-ray luminosity, Lx-M-500, scaling relations. We also account for a possible correlation between the intrinsic (lognormal) scatter of L-x and Y-SZ at fixed mass. We find the corresponding correlation coefficient to be r = 0.47(-0.35)(+0.24), and at the current precision level our constraints on the scaling relations are consistent with previous works. For our APEX-SZ sample, we find that ignoring the covariance between the SZ and X-ray observables biases the normalization of the Y-SZ-M-500 scaling high by 1-2 sigma and the slope low by similar to 1 sigma, even when the SZ effect plays no role in the sample selection. We conclude that for higher precision data and larger cluster samples, as anticipated from on-going and near-future cluster cosmology experiments, similar biases (due to intrinsic covariances of cluster observables) in the scaling relations will dominate the cosmological error budget if not accounted for correctly.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy