SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sommer J) ;pers:(Sommer Wolfgang H.)"

Sökning: WFRF:(Sommer J) > Sommer Wolfgang H.

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schumann, Gunter, et al. (författare)
  • Genome-wide association and genetic functional studies identify autism susceptibility candidate 2 gene (AUTS2) in the regulation of alcohol consumption
  • 2011
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 108:17, s. 7119-7124
  • Tidskriftsartikel (refereegranskat)abstract
    • Alcohol consumption is a moderately heritable trait, but the genetic basis in humans is largely unknown, despite its clinical and societal importance. We report a genome-wide association study meta-analysis of similar to 2.5 million directly genotyped or imputed SNPs with alcohol consumption (gram per day per kilogram body weight) among 12 population-based samples of European ancestry, comprising 26,316 individuals, with replication genotyping in an additional 21,185 individuals. SNP rs6943555 in autism susceptibility candidate 2 gene (AUTS2) was associated with alcohol consumption at genome-wide significance (P = 4 x 10(-8) to P = 4 x 10(-9)). We found a genotype-specific expression of AUTS2 in 96 human prefrontal cortex samples (P = 0.026) and significant (P < 0.017) differences in expression of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol consumption. Downregulation of an AUTS2 homolog caused reduced alcohol sensitivity in Drosophila (P < 0.001). Our finding of a regulator of alcohol consumption adds knowledge to our understanding of genetic mechanisms influencing alcohol drinking behavior.
  •  
2.
  • Ruggeri, Barbara, et al. (författare)
  • Association of Protein Phosphatase PPM1G With Alcohol Use Disorder and Brain Activity During Behavioral Control in a Genome-Wide Methylation Analysis
  • 2015
  • Ingår i: American Journal of Psychiatry. - : American Psychiatric Association Publishing. - 0002-953X .- 1535-7228. ; 172:6, s. 543-552
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The genetic component of alcohol use disorder is substantial, but monozygotic twin discordance indicates a role for nonheritable differences that could be mediated by epigenetics. Despite growing evidence associating epigenetics and psychiatric disorders, it is unclear how epigenetics, particularly DNA methylation, relate to brain function and behavior, including drinking behavior. Method: The authors carried out a genome-wide analysis of DNA methylation of 18 monozygotic twin pairs discordant for alcohol use disorder and validated differentially methylated regions. After validation, the authors characterized these differentially methylated regions using personality trait assessment and functional MRI in a sample of 499 adolescents. Results: Hypermethylation in the 3'-protein-phosphatase-1G (PPM1G) gene locus was associated with alcohol use disorder. The authors found association of PPM1G hypermethylation with early escalation of alcohol use and increased impulsiveness. They also observed association of PPM1G hypermethylation with increased blood-oxygen-level-dependent response in the right subthalamic nucleus during an impulsiveness task. Conclusions: Overall, the authors provide first evidence for an epigenetic marker associated with alcohol consumption and its underlying neurobehavioral phenotype.
  •  
3.
  • Baker, Maggie, et al. (författare)
  • Early rearing history influences oxytocin receptor epigenetic regulation in rhesus macaques
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 114:44, s. 11769-11774
  • Tidskriftsartikel (refereegranskat)abstract
    • Adaptations to stress can occur through epigenetic processes and may be a conduit for informing offspring of environmental challenge. We employed ChIP-sequencing for H3K4me3 to examine effects of early maternal deprivation (peer-rearing, PR) in archived rhesus macaque hippocampal samples (male, n = 13). Focusing on genes with roles in stress response and behavior, we assessed the effects of rearing on H3K4me3 binding by ANOVA. We found decreased H3K4me3 binding at genes critical to behavioral stress response, the most robust being the oxytocin receptor gene OXTR, for which we observed a corresponding decrease in RNA expression. Based on this finding, we performed behavioral analyses to deter mine whether a gain-of-function nonsynonymous OXTR SNP inter acted with early stress to influence relevant behavioral stress reactivity phenotypes (n = 194), revealing that this SNP partially rescued the PR phenotype. PR infants exhibited higher levels of separation anxiety and arousal in response to social separation, but infants carrying the alternative OXTR allele did not exhibit as great a separation response. These data indicate that the oxytocin system is involved in social-separation response and suggest that epigenetic down-modulation of OXTR could contribute to behavior al differences observed in PR animals. Epigenetic changes at OXTR may represent predictive adaptive responses that could impart readiness to respond to environmental challenge or maintain proximity to a caregiver but also contribute to behavioral pathology. Our data also demonstrate that OXTR polymorphism can permit animals to partially overcome the detrimental effects of early maternal deprivation, which could have translational implications for human psychiatric disorders.
  •  
4.
  • Bilbao, Ainhoa, et al. (författare)
  • A Pharmacogenetic Determinant of Mu-Opioid Receptor Antagonist Effects on Alcohol Reward and Consumption : Evidence from Humanized Mice.
  • 2015
  • Ingår i: Biological Psychiatry. - : Elsevier. - 0006-3223 .- 1873-2402. ; 77:10, s. 850-858
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: It has been proposed that therapeutic responses to naltrexone in alcoholism are moderated by variation at the mu-opioid receptor gene locus (OPRM1). This remains controversial because human results vary and no prospectively genotyped studies have been reported. We generated humanized mice carrying the respective human OPRM1 A118G alleles. Here, we used this model system to examine the role of OPRM1 A118G variation for opioid antagonist effects on alcohol responses.METHODS: Effects of naltrexone on alcohol reward were examined using intracranial self-stimulation. Effects of naltrexone or nalmefene on alcohol intake were examined in continuous access home cage two-bottle free-choice drinking and operant alcohol self-administration paradigms.RESULTS: Alcohol lowered brain stimulation reward thresholds in 118GG mice in a manner characteristic of rewarding drugs, and this effect was blocked by naltrexone. Brain stimulation reward thresholds were unchanged by alcohol or naltrexone in 118AA mice. In the home cage, increased alcohol intake emerged in 118GG mice with increasing alcohol concentrations and was 33% higher at 17% alcohol. At this concentration, naltrexone selectively suppressed alcohol intake in 118GG animals to a level virtually identical to that of 118AA mice. No effect of naltrexone was found in the latter group. Similarly, both naltrexone and nalmefene were more effective in suppressing operant alcohol self-administration in 118GG mice.CONCLUSIONS: In a model that allows close experimental control, OPRM1 A118G variation robustly moderates effects of opioid antagonism on alcohol reward and consumption. These findings strongly support a personalized medicine approach to alcoholism treatment that takes into account OPRM1 genotype.
  •  
5.
  • Johnstone, Andrea L., et al. (författare)
  • Dysregulation of the histone demethylase KDM6B in alcohol dependence is associated with epigenetic regulation of inflammatory signaling pathways
  • 2021
  • Ingår i: Addiction Biology. - : WILEY. - 1355-6215 .- 1369-1600. ; 26:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetic enzymes oversee long-term changes in gene expression by integrating genetic and environmental cues. While there are hundreds of enzymes that control histone and DNA modifications, their potential roles in substance abuse and alcohol dependence remain underexplored. A few recent studies have suggested that epigenetic processes could underlie transcriptomic and behavioral hallmarks of alcohol addiction. In the present study, we sought to identify epigenetic enzymes in the brain that are dysregulated during protracted abstinence as a consequence of chronic and intermittent alcohol exposure. Through quantitative mRNA expression analysis of over 100 epigenetic enzymes, we identified 11 that are significantly altered in alcohol-dependent rats compared with controls. Follow-up studies of one of these enzymes, the histone demethylase KDM6B, showed that this enzyme exhibits region-specific dysregulation in the prefrontal cortex and nucleus accumbens of alcohol-dependent rats. KDM6B was also upregulated in the human alcoholic brain. Upregulation of KDM6B protein in alcohol-dependent rats was accompanied by a decrease of trimethylation levels at histone H3, lysine 27 (H3K27me3), consistent with the known demethylase specificity of KDM6B. Subsequent epigenetic (chromatin immunoprecipitation [ChIP]-sequencing) analysis showed that alcohol-induced changes in H3K27me3 were significantly enriched at genes in the IL-6 signaling pathway, consistent with the well-characterized role of KDM6B in modulation of inflammatory responses. Knockdown of KDM6B in cultured microglial cells diminished IL-6 induction in response to an inflammatory stimulus. Our findings implicate a novel KDM6B-mediated epigenetic signaling pathway integrated with inflammatory signaling pathways that are known to underlie the development of alcohol addiction.
  •  
6.
  • Ruggeri, Barbara, et al. (författare)
  • Methylation of OPRL1 mediates the effect of psychosocial stress on binge drinking in adolescents
  • 2018
  • Ingår i: Journal of Child Psychology and Psychiatry. - : Wiley. - 0021-9630 .- 1469-7610. ; 9:6, s. 50-658
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Nociceptin is a key regulator linking environmental stress and alcohol drinking. In a genome-wide methylation analysis, we recently identified an association of a methylated region in the OPRL1 gene with alcohol-use disorders.METHODS: Here, we investigate the biological basis of this observation by analysing psychosocial stressors, methylation of the OPRL1 gene, brain response during reward anticipation and alcohol drinking in 660 fourteen-year-old adolescents of the IMAGEN study. We validate our findings in marchigian sardinian (msP) alcohol-preferring rats that are genetically selected for increased alcohol drinking and stress sensitivity.RESULTS: We found that low methylation levels in intron 1 of OPRL1 are associated with higher psychosocial stress and higher frequency of binge drinking, an effect mediated by OPRL1 methylation. In individuals with low methylation of OPRL1, frequency of binge drinking is associated with stronger BOLD response in the ventral striatum during reward anticipation. In msP rats, we found that stress results in increased alcohol intake and decreased methylation of OPRL1 in the nucleus accumbens.CONCLUSIONS: Our findings describe an epigenetic mechanism that helps to explain how psychosocial stress influences risky alcohol consumption and reward processing, thus contributing to the elucidation of biological mechanisms underlying risk for substance abuse.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy