SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Spector Logan G.) ;pers:(Melin Beatrice)"

Search: WFRF:(Spector Logan G.) > Melin Beatrice

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Wang, Zhaoming, et al. (author)
  • Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33
  • 2014
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:24, s. 6616-6633
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.
  •  
2.
  • Lupo, Philip J., et al. (author)
  • Allergies, atopy, immune-related factors and childhood rhabdomyosarcoma : a report from the Children's Oncology Group
  • 2014
  • In: International Journal of Cancer. - : Wiley-Blackwell. - 0020-7136 .- 1097-0215. ; 134:2, s. 431-436
  • Journal article (peer-reviewed)abstract
    • Rhabdomyosarcoma (RMS) is a highly malignant tumor of developing muscle that can occur anywhere in the body. Due to its rarity, relatively little is known about the epidemiology of RMS. Atopic disease is hypothesized to be protective against several malignancies; however, to our knowledge, there have been no assessments of atopy and childhood RMS. Therefore, we explored this association in a case-control study of 322 childhood RMS cases and 322 pair-matched controls. Cases were enrolled in a trial run by the Intergroup Rhabdomyosarcoma Study Group. Controls were matched to cases on race, sex and age. The following atopic conditions were assessed: allergies, asthma, eczema and hives; in addition, we examined other immune-related factors: birth order, day-care attendance and breastfeeding. Conditional logistic-regression models were used to calculate an odds ratio (OR) and 95% confidence interval (CI) for each exposure, adjusted for age, race, sex, household income and parental education. As the two most common histologic types of RMS are embryonal (n=215) and alveolar (n=66), we evaluated effect heterogeneity of these exposures. Allergies (OR=0.60, 95% CI: 0.41-0.87), hives (OR=0.61, 95% CI: 0.38-0.97), day-care attendance (OR=0.48, 95% CI: 0.32-0.71) and breastfeeding for12 months (OR=0.36, 95% CI: 0.18-0.70) were inversely associated with childhood RMS. These exposures did not display significant effect heterogeneity between histologic types (p>0.52 for all exposures). This is the first study indicating that atopic exposures may be protective against childhood RMS, suggesting additional studies are needed to evaluate the immune system's role in the development of this tumor.
  •  
3.
  • Lupo, Philip J., et al. (author)
  • Family history of cancer and childhood rhabdomyosarcoma : a report from the Children's Oncology Group and the Utah Population Database
  • 2015
  • In: Cancer Medicine. - : Wiley. - 2045-7634. ; 4:5, s. 781-790
  • Journal article (peer-reviewed)abstract
    • Relatively little is known about the epidemiology and factors underlying susceptibility to childhood rhabdomyosarcoma (RMS). To better characterize genetic susceptibility to childhood RMS, we evaluated the role of family history of cancer using data from the largest case-control study of RMS and the Utah Population Database (UPDB). RMS cases (n=322) were obtained from the Children's Oncology Group (COG). Population-based controls (n=322) were pair-matched to cases on race, sex, and age. Conditional logistic regression was used to evaluate the association between family history of cancer and childhood RMS. The results were validated using the UPDB, from which 130 RMS cases were identified and matched to controls (n=1300) on sex and year of birth. The results were combined to generate summary odds ratios (ORs) and 95% confidence intervals (CI). Having a first-degree relative with a cancer history was more common in RMS cases than controls (ORs=1.39, 95% CI: 0.97-1.98). Notably, this association was stronger among those with embryonal RMS (ORs=2.44, 95% CI: 1.54-3.86). Moreover, having a first-degree relative who was younger at diagnosis of cancer (<30years) was associated with a greater risk of RMS (ORs=2.37, 95% CI: 1.34-4.18). In the largest analysis of its kind, we found that most children diagnosed with RMS did not have a family history of cancer. However, our results indicate an increased risk of RMS (particularly embryonal RMS) in children who have a first-degree relative with cancer, and among those whose relatives were diagnosed with cancer at <30years of age.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view