SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spijkerman Annemieke M. W.) ;pers:(Imamura Fumiaki)"

Sökning: WFRF:(Spijkerman Annemieke M. W.) > Imamura Fumiaki

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Imamura, Fumiaki, et al. (författare)
  • A combination of plasma phospholipid fatty acids and its association with incidence of type 2 diabetes : The EPIC-InterAct case-cohort study
  • 2017
  • Ingår i: PLoS Medicine. - : Public Library Science. - 1549-1277 .- 1549-1676. ; 14:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Combinations of multiple fatty acids may influence cardiometabolic risk more than single fatty acids. The association of a combination of fatty acids with incident type 2 diabetes (T2D) has not been evaluated.Methods and findings We measured plasma phospholipid fatty acids by gas chromatography in 27,296 adults, including 12,132 incident cases of T2D, over the follow-up period between baseline (1991-1998) and 31 December 2007 in 8 European countries in EPIC-InterAct, a nested casecohort study. The first principal component derived by principal component analysis of 27 individual fatty acids (mole percentage) was the main exposure (subsequently called the fatty acid pattern score [FA-pattern score]). The FA-pattern score was partly characterised by high concentrations of linoleic acid, stearic acid, odd-chain fatty acids, and very-long-chain saturated fatty acids and low concentrations of.-linolenic acid, palmitic acid, and long-chain monounsaturated fatty acids, and it explained 16.1% of the overall variability of the 27 fatty acids. Based on country-specific Prentice-weighted Cox regression and random-effects meta-analysis, the FA-pattern score was associated with lower incident T2D. Comparing the top to the bottom fifth of the score, the hazard ratio of incident T2D was 0.23 (95% CI 0.19-0.29) adjusted for potential confounders and 0.37 (95% CI 0.27-0.50) further adjusted for metabolic risk factors. The association changed little after adjustment for individual fatty acids or fatty acid subclasses. In cross-sectional analyses relating the FA-pattern score to metabolic, genetic, and dietary factors, the FA-pattern score was inversely associated with adiposity, triglycerides, liver enzymes, C-reactive protein, a genetic score representing insulin resistance, and dietary intakes of soft drinks and alcohol and was positively associated with high-density-lipoprotein cholesterol and intakes of polyunsaturated fat, dietary fibre, and coffee (p < 0.05 each). Limitations include potential measurement error in the fatty acids and other model covariates and possible residual confounding.Conclusions A combination of individual fatty acids, characterised by high concentrations of linoleic acid, odd-chain fatty acids, and very long-chain fatty acids, was associated with lower incidence of T2D. The specific fatty acid pattern may be influenced by metabolic, genetic, and dietary factors.
  •  
2.
  • Forouhi, Nita G., et al. (författare)
  • Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes : The EPIC-InterAct Case-Cohort Study
  • 2016
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Whether and how n-3 and n-6 polyunsaturated fatty acids (PUFAs) are related to type 2 diabetes (T2D) is debated. Objectively measured plasma PUFAs can help to clarify these associations.Methods and Findings Plasma phospholipid PUFAs were measured by gas chromatography among 12,132 incident T2D cases and 15,919 subcohort participants in the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct study across eight European countries. Country-specific hazard ratios (HRs) were estimated using Prentice-weighted Cox regression and pooled by random-effects meta-analysis. We also systematically reviewed published prospective studies on circulating PUFAs and T2D risk and pooled the quantitative evidence for comparison with results from EPIC-InterAct. In EPIC-InterAct, among long-chain n-3 PUFAs, a-linolenic acid (ALA) was inversely associated with T2D (HR per standard deviation [SD] 0.93; 95% CI 0.88-0.98), but eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were not significantly associated. Among n-6 PUFAs, linoleic acid (LA) (0.80; 95% CI 0.77-0.83) and eicosadienoic acid (EDA) (0.89; 95% CI 0.85-0.94) were inversely related, and arachidonic acid (AA) was not significantly associated, while significant positive associations were observed with.-linolenic acid (GLA), dihomo-GLA, docosatetraenoic acid (DTA), and docosapentaenoic acid (n6-DPA), with HRs between 1.13 to 1.46 per SD. These findings from EPIC-InterAct were broadly similar to comparative findings from summary estimates from up to nine studies including between 71 to 2,499 T2D cases. Limitations included potential residual confounding and the inability to distinguish between dietary and metabolic influences on plasma phospholipid PUFAs.Conclusions These large-scale findings suggest an important inverse association of circulating plant-origin n-3 PUFA (ALA) but no convincing association of marine-derived n3 PUFAs (EPA and DHA) with T2D. Moreover, they highlight that the most abundant n6-PUFA (LA) is inversely associated with T2D. The detection of associations with previously less well-investigated PUFAs points to the importance of considering individual fatty acids rather than focusing on fatty acid class.
  •  
3.
  • Forouhi, Nita G., et al. (författare)
  • Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes : the EPIC-InterAct case-cohort study
  • 2014
  • Ingår i: LANCET DIABETES & ENDOCRINOLOGY. - 2213-8587 .- 2213-8595. ; 2:10, s. 810-818
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Conflicting evidence exists regarding the association between saturated fatty acids (SFAs) and type 2 diabetes. In this longitudinal case-cohort study, we aimed to investigate the prospective associations between objectively measured individual plasma phospholipid SFAs and incident type 2 diabetes in EPIC-InterAct participants. Methods The EPIC-InterAct case-cohort study includes 12 403 people with incident type 2 diabetes and a representative subcohort of 16 154 individuals who were selected from a cohort of 340 234 European participants with 3 . 99 million person-years of follow-up (the EPIC study). Incident type 2 diabetes was ascertained until Dec 31, 2007, by a review of several sources of evidence. Gas chromatography was used to measure the distribution of fatty acids in plasma phospholipids (mol%); samples from people with type 2 diabetes and subcohort participants were processed in a random order by centre, and laboratory staff were masked to participant characteristics. We estimated country-specific hazard ratios (HRs) for associations per SD of each SFA with incident type 2 diabetes using Prentice-weighted Cox regression, which is weighted for case-cohort sampling, and pooled our findings using random-effects meta-analysis. Findings SFAs accounted for 46% of total plasma phospholipid fatty acids. In adjusted analyses, different individual SFAs were associated with incident type 2 diabetes in opposing directions. Even-chain SFAs that were measured (14: 0 [myristic acid], 16: 0 [palmitic acid], and 18: 0 [stearic acid]) were positively associated with incident type 2 diabetes (HR [95% CI] per SD difference: myristic acid 1.15 [95% CI 1.09-1.22], palmitic acid 1.26 [1.15-1.37], and stearic acid 1.06 [1.00-1.13]). By contrast, measured odd-chain SFAs (15: 0 [pentadecanoic acid] and 17: 0 [heptadecanoic acid]) were inversely associated with incident type 2 diabetes (HR [95% CI] per 1 SD difference: 0.79 [0.73-0.85] for pentadecanoic acid and 0.67 [0.63-0.71] for heptadecanoic acid), as were measured longer-chain SFAs (20: 0 [arachidic acid], 22:0 [behenic acid], 23:0 [tricosanoic acid], and 24:0 [lignoceric acid]), with HRs ranging from 0.72 to 0.81 (95% CIs ranging between 0.61 and 0.92). Our findings were robust to a range of sensitivity analyses. Interpretation Different individual plasma phospholipid SFAs were associated with incident type 2 diabetes in opposite directions, which suggests that SFAs are not homogeneous in their effects. Our findings emphasise the importance of the recognition of subtypes of these fatty acids. An improved understanding of differences in sources of individual SFAs from dietary intake versus endogenous metabolism is needed.
  •  
4.
  • Imamura, Fumiaki, et al. (författare)
  • Estimated Substitution of Tea or Coffee for Sugar-Sweetened Beverages Was Associated with Lower Type 2 Diabetes Incidence in Case-Cohort Analysis across 8 European Countries in the EPIC-InterAct Study
  • 2019
  • Ingår i: Journal of Nutrition. - : Elsevier BV. - 0022-3166 .- 1541-6100. ; 149:11, s. 1985-1993
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Beverage consumption is a modifiable risk factor for type 2 diabetes (T2D), but there is insufficient evidence to inform the suitability of substituting 1 type of beverage for another. Objective: The aim of this study was to estimate the risk of T2D when consumption of sugar-sweetened beverages (SSBs) was replaced with consumption of fruit juice, milk, coffee, or tea. Methods: In the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct case-cohort study of 8 European countries (n = 27,662, with 12,333 cases of incident T2D, 1992-2007), beverage consumption was estimated at baseline by dietary questionnaires. Using Prentice-weighted Cox regression adjusting for other beverages and potential confounders, we estimated associations of substituting 1 type of beverage for another on incident T2D. Results: Mean ± SD of estimated consumption of SSB was 55 ± 105 g/d. Means ± SDs for the other beverages were as follows: fruit juice, 59 ± 101 g/d; milk, 209 ± 203 g/d; coffee, 381 ± 372 g/d; and tea, 152 ± 282 g/d. Substituting coffee for SSBs by 250 g/d was associated with a 21% lower incidence of T2D (95% CI: 12%, 29%). The rate difference was-12.0 (95% CI:-20.0,-5.0) per 10,000 person-years among adults consuming SSBs ≥250 g/d (absolute rate = 48.3/10,000). Substituting tea for SSBs was estimated to lower T2D incidence by 22% (95% CI: 15%, 28%) or-11.0 (95% CI:-20.0,-2.6) per 10,000 person-years, whereas substituting fruit juice or milk was estimated not to alter T2D risk significantly. Conclusions: These findings indicate a potential benefit of substituting coffee or tea for SSBs for the primary prevention of T2D and may help formulate public health recommendations on beverage consumption in different populations.
  •  
5.
  • Zheng, Ju-Sheng, et al. (författare)
  • Association between plasma phospholipid saturated fatty acids and metabolic markers of lipid, hepatic, inflammation and glycaemic pathways in eight European countries : a cross-sectional analysis in the EPIC-InterAct study
  • 2017
  • Ingår i: BMC Medicine. - : BioMed Central. - 1741-7015. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Accumulating evidence suggests that individual circulating saturated fatty acids (SFAs) are heterogeneous in their associations with cardio-metabolic diseases, but evidence about associations of SFAs with metabolic markers of different pathogenic pathways is limited. We aimed to examine the associations between plasma phospholipid SFAs and the metabolic markers of lipid, hepatic, glycaemic and inflammation pathways. Methods: We measured nine individual plasma phospholipid SFAs and derived three SFA groups (odd-chain: C15:0 + C17:0, even-chain: C14:0 + C16:0 + C18:0, and very-long-chain: C20:0 + C22:0 + C23:0 + C24:0) in individuals from the subcohort of the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct case-cohort study across eight European countries. Using linear regression in 15,919 subcohort members, adjusted for potential confounders and corrected for multiple testing, we examined cross-sectional associations of SFAs with 13 metabolic markers. Multiplicative interactions of the three SFA groups with pre-specified factors, including body mass index (BMI) and alcohol consumption, were tested. Results: Higher levels of odd-chain SFA group were associated with lower levels of major lipids (total cholesterol (TC), triglycerides, apolipoprotein A-1 (ApoA1), apolipoprotein B (ApoB)) and hepatic markers (alanine transaminase (ALT), aspartate transaminase (AST), gamma-glutamyl transferase (GGT)). Higher even-chain SFA group levels were associated with higher levels of low-density lipoprotein cholesterol (LDL-C), TC/high-density lipoprotein cholesterol (HDL-C) ratio, triglycerides, ApoB, ApoB/A1 ratio, ALT, AST, GGT and CRP, and lower levels of HDL-C and ApoA1. Very-long-chain SFA group levels showed inverse associations with triglycerides, ApoA1 and GGT, and positive associations with TC, LDL-C, TC/HDL-C, ApoB and ApoB/A1. Associations were generally stronger at higher levels of BMI or alcohol consumption. Conclusions: Subtypes of SFAs are associated in a differential way with metabolic markers of lipid metabolism, liver function and chronic inflammation, suggesting that odd-chain SFAs are associated with lower metabolic risk and even-chain SFAs with adverse metabolic risk, whereas mixed findings were obtained for very-long-chain SFAs. The clinical and biochemical implications of these findings may vary by adiposity and alcohol intake.
  •  
6.
  • Li, Sherly X., et al. (författare)
  • Interaction between genes and macronutrient intake on the risk of developing type 2 diabetes : systematic review and findings from European Prospective Investigation into Cancer (EPIC)-InterAct
  • 2017
  • Ingår i: American Journal of Clinical Nutrition. - : American society for nutrition. - 0002-9165 .- 1938-3207. ; 106:1, s. 263-275
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Gene-diet interactions have been reported to contribute to the development of type 2 diabetes (T2D). However, to our knowledge, few examples have been consistently replicated to date. Objective: We aimed to identify existing evidence for genemacronutrient interactions and T2D and to examine the reported interactions in a large-scale study. Design: We systematically reviewed studies reporting genemacronutrient interactions and T2D. We searched the MEDLINE, Human Genome Epidemiology Network, and WHO International Clinical Trials Registry Platform electronic databases to identify studies published up to October 2015. Eligibility criteria included assessment of macronutrient quantity (e.g., total carbohydrate) or indicators of quality (e. g., dietary fiber) by use of self-report or objective biomarkers of intake. Interactions identified in the review were subsequently examined in the EPIC (European Prospective Investigation into Cancer)-InterAct case-cohort study (n = 21,148, with 9403 T2D cases; 8 European countries). Prentice-weighted Cox regression was used to estimate countryspecific HRs, 95% CIs, and P-interaction values, which were then pooled by random-effects meta-analysis. A primary model was fitted by using the same covariates as reported in the published studies, and a second model adjusted for additional covariates and estimated the effects of isocaloric macronutrient substitution. Results: Thirteen observational studies met the eligibility criteria (n < 1700 cases). Eight unique interactions were reported to be significant between macronutrients [carbohydrate, fat, saturated fat, dietary fiber, and glycemic load derived from self-report of dietary intake and circulating n-3 (v-3) polyunsaturated fatty acids] and genetic variants in or near transcription factor 7-like 2 (TCF7L2), gastric inhibitory polypeptide receptor (GIPR), caveolin 2 (CAV2), and peptidase D (PEPD) (P-interaction, 0.05). We found no evidence of interaction when we tried to replicate previously reported interactions. In addition, no interactions were detected in models with additional covariates. Conclusions: Eight gene-macronutrient interactions were identified for the risk of T2D from the literature. These interactions were not replicated in the EPIC-InterAct study, which mirrored the analyses undertaken in the original reports. Our findings highlight the importance of independent replication of reported interactions.
  •  
7.
  • Vissers, Linda E.T., et al. (författare)
  • Dairy product intake and risk of type 2 diabetes in EPIC-interact : A mendelian randomization study
  • 2019
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 42:4, s. 568-575
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE To estimate the causal association between intake of dairy products and incident type 2 diabetes. RESEARCH DESIGN AND METHODS The analysis included 21,820 European individuals (9,686 diabetes cases) of the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct case-cohort study. Participants were genotyped, and rs4988235 (LCT-12910C>T), a single nucleotide polymorphism (SNP) for lactase persistence (LP) that enables digestion of dairy sugar, i.e., lactose, was imputed. Baseline dietary intakes were assessed with diet questionnaires. We investigated the associations between imputed SNP dosage for rs4988235 and intake of dairy products and other foods through linear regression. Mendelian randomization (MR) estimates for the milk-diabetes relationship were obtained through a two-stage least squares regression. RESULTS Each additional LP allele was associated with a higher intake of milk (b 17.1 g/day, 95% CI 10.6–23.6) and milk beverages (b 2.8 g/day, 95% CI 1.0–4.5) but not with intake of other dairy products. Other dietary intakes associated with rs4988235 included fruits (b 27.0 g/day, 95% CI 212.4 to 21.7 per additional LP allele), nonalcoholic beverages (b 218.0 g/day, 95% CI 234.4 to 21.6), and wine (b 24.8 g/day, 95% CI 29.1 to 20.6). In instrumental variable analysis, LP-associated milk intake was not associated with diabetes (hazard ratio per 15 g/day 0.99, 95% CI 0.93–1.05). CONCLUSIONS rs4988235 was associated with milk intake but not with intake of other dairy products. This MR study does not suggest that milk intake is associated with diabetes, which is consistent with previous observational and genetic associations. LP may be associated with intake of other foods as well, but owing to the modest associations, we consider it unlikely that this caused the observed null result.
  •  
8.
  • Zheng, Ju-Sheng, et al. (författare)
  • Association of Plasma Vitamin D Metabolites With Incident Type 2 Diabetes : EPIC-InterAct Case-Cohort Study
  • 2019
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : Oxford University Press. - 0021-972X .- 1945-7197. ; 104:4, s. 1293-1303
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Existing evidence for the prospective association of vitamin D status with type 2 diabetes (T2D) is focused almost exclusively on circulating total 25-hydroxyvitamin D [25(OH)D] without distinction between its subtypes: nonepimeric and epimeric 25(OH)D3 stereoisomers, and 25(OH)D2, the minor component of 25(OH)D. We aimed to investigate the prospective associations of circulating levels of the sum and each of these three metabolites with incident T2D.Methods: This analysis in the European Prospective Investigation into Cancer and Nutrition (EPIC)–InterAct case-cohort study for T2D included 9671 incident T2D cases and 13,562 subcohort members. Plasma vitamin D metabolites were quantified by liquid chromatography–mass spectrometry. We used a multivariable Prentice-weighted Cox regression to estimate hazard ratios (HRs) of T2D for each metabolite. Analyses were performed separately within country, and estimates were combined across countries using random-effects meta-analysis.Results: The mean concentrations (SD) of total 25(OH)D, nonepimeric 25(OH)D3, epimeric 25(OH)D3, and 25(OH)D2 were 41.1 (17.2), 40.7 (17.3), 2.13 (1.31), and 8.16 (6.52) nmol/L, respectively. Plasma total 25(OH)D and nonepimeric 25(OH)D3 were inversely associated with incident T2D [multivariable-adjusted HR per 1 SD = 0.81 (95% CI, 0.77, 0.86) for both variables], whereas epimeric 25(OH)D3 was positively associated [per 1 SD HR = 1.16 (1.09, 1.25)]. There was no statistically significant association with T2D for 25(OH)D2 [per 1 SD HR = 0.94 (0.76, 1.18)].Conclusions: Plasma nonepimeric 25(OH)D3 was inversely associated with incident T2D, consistent with it being the major metabolite contributing to total 25(OH)D. The positive association of the epimeric form of 25(OH)D3 with incident T2D provides novel information to assess the biological relevance of vitamin D epimerization and vitamin D subtypes in diabetes etiology.
  •  
9.
  • Zheng, Ju Sheng, et al. (författare)
  • Plasma Vitamin C and type 2 diabetes : Genome-wide association study and mendelian randomization analysis in European populations
  • 2021
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 44:1, s. 98-106
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Higher plasma vitamin C levels are associated with lower type 2 diabetes risk, but whether this association is causal is uncertain. To investigate this, we studied the association of genetically predicted plasma vitamin C with type 2 diabetes. RESEARCH DESIGN AND METHODS We conducted genome-wide association studies of plasma vitamin C among 52,018 individuals of European ancestry to discover novel genetic variants. We performed Mendelian randomization analyses to estimate the association of genetically predicted differences in plasma vitamin C with type 2 diabetes in up to 80,983 case participants and 842,909 noncase participants. We compared this estimate with the observational association between plasma vitamin C and incident type 2 diabetes, including 8,133 case participants and 11,073 noncase participants. RESULTS We identified 11 genomic regions associated with plasma vitamin C (P < 5 ☓ 10-8), with the strongest signal at SLC23A1, and 10 novel genetic loci including SLC23A3, CHPT1, BCAS3, SNRPF, RER1, MAF, GSTA5, RGS14, AKT1, and FADS1. Plasma vitamin C was inversely associated with type 2 diabetes (hazard ratio per SD 0.88; 95% CI 0.82, 0.94), but there was no association between genetically predicted plasma vitamin C (excluding FADS1 variant due to its apparent pleiotropic effect) and type 2 diabetes (1.03; 95% CI 0.96, 1.10). CONCLUSIONS These findings indicate discordance between biochemically measured and genetically predicted plasma vitamin C levels in the association with type 2 diabetes among European populations. The null Mendelian randomization findings provide no strong evidence to suggest the use of vitamin C supplementation for type 2 diabetes prevention.
  •  
10.
  • Ibsen, Daniel B, et al. (författare)
  • Replacement of Red and Processed Meat With Other Food Sources of Protein and the Risk of Type 2 Diabetes in European Populations : The EPIC-InterAct Study
  • 2020
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 43:11, s. 2660-2667
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: There is sparse evidence for the association of suitable food substitutions for red and processed meat on the risk of type 2 diabetes. We modeled the association between replacing red and processed meat with other protein sources and the risk of type 2 diabetes and estimated its population impact.RESEARCH DESIGN AND METHODS: The European Prospective Investigation into Cancer (EPIC)-InterAct case cohort included 11,741 individuals with type 2 diabetes and a subcohort of 15,450 participants in eight countries. We modeled the replacement of self-reported red and processed meat with poultry, fish, eggs, legumes, cheese, cereals, yogurt, milk, and nuts. Country-specific hazard ratios (HRs) for incident type 2 diabetes were estimated by Prentice-weighted Cox regression and pooled using random-effects meta-analysis.RESULTS: There was a lower hazard for type 2 diabetes for the modeled replacement of red and processed meat `(50 g/day) with cheese (HR 0.90, 95% CI 0.83-0.97) (30 g/day), yogurt (0.90, 0.86-0.95) (70 g/day), nuts (0.90, 0.84-0.96) (10 g/day), or cereals (0.92, 0.88-0.96) (30 g/day) but not for replacements with poultry, fish, eggs, legumes, or milk. If a causal association is assumed, replacing red and processed meat with cheese, yogurt, or nuts could prevent 8.8%, 8.3%, or 7.5%, respectively, of new cases of type 2 diabetes.CONCLUSIONS: Replacement of red and processed meat with cheese, yogurt, nuts, or cereals was associated with a lower rate of type 2 diabetes. Substituting red and processed meat by other protein sources may contribute to the prevention of incident type 2 diabetes in European populations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy