SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sporre Moa K.) "

Sökning: WFRF:(Sporre Moa K.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blichner, Sara M., et al. (författare)
  • Implementing a sectional scheme for early aerosol growth from new particle formation in the Norwegian Earth System Model v2 : Comparison to observations and climate impacts
  • 2021
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 14:6, s. 3335-3359
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol-cloud interactions contribute to a large portion of the spread in estimates of climate forcing, climate sensitivity and future projections. An important part of this uncertainty is how much new particle formation (NPF) contributes to cloud condensation nuclei (CCN) and, furthermore, how this changes with changes in anthropogenic emissions. Incorporating NPF and early growth in Earth system models (ESMs) is, however, challenging due to uncertain parameters (e.g. participating vapours), structural issues (numerical description of growth from ∼ 1 to ∼ 100 nm) and the large scale of an ESM grid compared to the NPF scale. A common approach in ESMs is to represent the particle size distribution by a certain number of log-normal modes. Sectional schemes, on the other hand, in which the size distribution is represented by bins, are considered closer to first principles because they do not make an a priori assumption about the size distribution. In order to improve the representation of early growth, we have implemented a sectional scheme for the smallest particles (5-39.6 nm diameter) in the Norwegian Earth System Model (NorESM), feeding particles into the original aerosol scheme. This is, to our knowledge, the first time such an approach has been tried. We find that including the sectional scheme for early growth improves the aerosol number concentration in the model when comparing against observations, particularly in the 50-100 nm diameter range. Furthermore, we find that the model with the sectional scheme produces much fewer particles than the original scheme in polluted regions, while it produces more in remote regions and the free troposphere, indicating a potential impact on the estimated aerosol forcing. Finally, we analyse the effect on cloud-aerosol interactions and find that the effect of changes in NPF efficiency on clouds is highly heterogeneous in space. While in remote regions, more efficient NPF leads to higher cloud droplet number concentration (CDNC), in polluted regions the opposite is in fact the case.
  •  
2.
  • Chen, Deliang, 1961, et al. (författare)
  • Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences
  • 2020
  • Ingår i: Tellus Series B-Chemical and Physical Meteorology. - : Stockholm University Press. - 1600-0889 .- 0280-6509. ; 72:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is not only about changes in means of climatic variables such as temperature, precipitation and wind, but also their extreme values which are of critical importance to human society and ecosystems. To inspire the Swedish climate research community and to promote assessments of international research on past and future changes in extreme weather events against the global climate change background, the Earth Science Class of the Royal Swedish Academy of Sciences organized a workshop entitled 'Extreme weather events in a warming world' in 2019. This article summarizes and synthesizes the key points from the presentations and discussions of the workshop on changes in floods, droughts, heat waves, as well as on tropical cyclones and extratropical storms. In addition to reviewing past achievements in these research fields and identifying research gaps with a focus on Sweden, future challenges and opportunities for the Swedish climate research community are highlighted.
  •  
3.
  • Ausmeel, Stina, et al. (författare)
  • Ship plumes in the Baltic Sea Sulfur Emission Control Area: chemical characterization and contribution to coastal aerosol concentrations
  • 2020
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 20:15, s. 9135-9151
  • Tidskriftsartikel (refereegranskat)abstract
    • In coastal areas, there is increased concern aboutemissions from shipping activities and the associated impacton air quality. We have assessed the ship aerosol propertiesand the contribution to coastal particulate matter (PM) andnitrogen dioxide (NO2) levels by measuring ship plumes inambient conditions at a site in southern Sweden, within a SulfurEmission Control Area. Measurements took place duringa summer and a winter campaign, 10 km downwind ofa major shipping lane. Individual ships showed large variabilityin contribution to total particle mass, organics, sulfate,and NO2. The average emission contribution of theshipping lane was 2913 and 3720 ngm?3 to PM0:5,188 and 3419 ngm?3 to PM0:15, and 1:210:57 and1:110:61 μgm?3 to NO2, during winter and summer, respectively.Sulfate and organics dominated the particle massand most plumes contained undetectable amounts of equivalentblack carbon (eBC). The average eBC contribution was3:51:7 ngm?3 and the absorption Ångström exponent wasclose to 1. Simulated ageing of the ship aerosols using anoxidation flow reactor showed that on a few occasions, therewas an increase in sulfate and organic mass after photochemicalprocessing of the plumes. However, most plumes did notproduce measurable amounts of secondary PM upon simulatedageing.
  •  
4.
  • Martinsson, Bengt G., et al. (författare)
  • Five-satellite-sensor study of the rapid decline of wildfire smoke in the stratosphere
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:6, s. 3967-3984
  • Tidskriftsartikel (refereegranskat)abstract
    • Smoke from western North American wildfires reached the stratosphere in large amounts in August 2017. Limb-oriented satellite-based sensors are commonly used for studies of wildfire aerosol injected into the stratosphere (OMPS-LP (Ozone Mapping and Profiler Suite Limb Profiler) and SAGE III/ISS (Stratospheric Aerosol and Gas Experiment III on the International Space Station)). We find that these methods are inadequate for studies of the first 1-2 months after such a strong fire event due to event termination ("saturation"). The nadir-viewing lidar CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) is less affected due to shorter path in the smoke; furthermore, it provides a means to develop a method to correct for strong attenuation of the signal. After the initial phase, the aerosol optical depth (AOD) from OMPS-LP and CALIOP show very good agreement above the 380ĝK isentrope, whereas OMPS-LP tends to produce higher AOD than CALIOP in the lowermost stratosphere (LMS), probably due to reduced sensitivity at altitudes below 17ĝkm. Time series from CALIOP of attenuation-corrected stratospheric AOD of wildfire smoke show an exponential decline during the first month after the fire, which coincides with highly significant changes in the wildfire aerosol optical properties. The AOD decline is verified by the evolution of the smoke layer composition, comparing the aerosol scattering ratio (CALIOP) to the water vapor concentration from MLS (Microwave Limb Sounder). Initially the stratospheric wildfire smoke AOD is comparable with the most important volcanic eruptions during the last 25 years. Wildfire aerosol declines much faster, 80ĝ%-90ĝ% of the AOD is removed with a half-life of approximately 10ĝd. We hypothesize that this dramatic decline is caused by photolytic loss. This process is rarely observed in the atmosphere. However, in the stratosphere this process can be studied with practically no influence from wet deposition, in contrast to the troposphere where this is the main removal path of submicron aerosol particles. Despite the loss, the aerosol particles from wildfire smoke in the stratosphere are relevant for the climate.
  •  
5.
  • Martinsson, Johan, et al. (författare)
  • Exploring sources of biogenic secondary organic aerosol compounds using chemical analysis and the FLEXPART model
  • 2017
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:18, s. 11025-11040
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular tracers in secondary organic aerosols (SOAs) can provide information on origin of SOA, as well as regional scale processes involved in their formation. In this study 9 carboxylic acids, 11 organosulfates (OSs) and 2 nitrooxy organosulfates (NOSs) were determined in daily aerosol particle filter samples from Vavihill measurement station in southern Sweden during June and July 2012. Several of the observed compounds are photo-oxidation products from biogenic volatile organic compounds (BVOCs). Highest average mass concentrations were observed for carboxylic acids derived from fatty acids and monoterpenes (12. 3 ± 15. 6 and 13. 8 ± 11. 6 ng mg-3, respectively). The FLEXPART model was used to link nine specific surface types to single measured compounds. It was found that the surface category sea and ocean was dominating the air mass exposure (56 %) but contributed to low mass concentration of observed chemical compounds. A principal component (PC) analysis identified four components, where the one with highest explanatory power (49 %) displayed clear impact of coniferous forest on measured mass concentration of a majority of the compounds. The three remaining PCs were more difficult to interpret, although azelaic, suberic, and pimelic acid were closely related to each other but not to any clear surface category. Hence, future studies should aim to deduce the biogenic sources and surface category of these compounds. This study bridges micro-level chemical speciation to air mass surface exposure at the macro level.
  •  
6.
  • Sandvik, Oscar S., et al. (författare)
  • Methodology to obtain highly resolved SO2 vertical profiles for representation of volcanic emissions in climate models
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:11, s. 7153-7165
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we describe a methodology to create high-vertical-resolution SO2 profiles from volcanic emissions. We demonstrate the method's performance for the volcanic clouds following the eruption of Sarychev in June 2009. The resulting profiles are based on a combination of satellite SO2 and aerosol retrievals together with trajectory modelling. We use satellite-based measurements, namely lidar backscattering profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite instrument, to create vertical profiles for SO2 swaths from the Atmospheric Infrared Sounder (AIRS) aboard the Aqua satellite. Vertical profiles are created by transporting the air containing volcanic aerosol seen in CALIOP observations using the FLEXible PARTicle dispersion model (FLEXPART) while preserving the high vertical resolution using the potential temperatures from the MERRA-2 (Modern-Era Retrospective analysis for Research and Application) meteorological data for the original CALIOP swaths. For the Sarychev eruption, air tracers from 75 CALIOP swaths within 9g d after the eruption are transported forwards and backwards and then combined at a point in time when AIRS swaths cover the complete volcanic SO2 cloud. Our method creates vertical distributions for column density observations of SO2 for individual AIRS swaths, using height information from multiple CALIOP swaths. The resulting dataset gives insight into the height distribution in the different sub-clouds of SO2 within the stratosphere. We have compiled a gridded high-vertical-resolution SO2 inventory that can be used in Earth system models, with a vertical resolution of 1g K in potential temperature, 61g g 56g m, or 1.8g g 2.9g mbar.
  •  
7.
  • Sporre, Moa K., et al. (författare)
  • Comparison of MODIS and VIIRS cloud properties with ARM ground-based observations over Finland
  • 2016
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 9:7, s. 3193-3203
  • Tidskriftsartikel (refereegranskat)abstract
    • Cloud retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the satellites Terra and Aqua and the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard the Suomi-NPP satellite are evaluated using a combination of ground-based instruments providing vertical profiles of clouds. The ground-based measurements are obtained from the Atmospheric Radiation Measurement (ARM) programme mobile facility, which was deployed in Hyytiälä, Finland, between February and September 2014 for the Biogenic Aerosols-Effects on Clouds and Climate (BAECC) campaign. The satellite cloud parameters cloud top height (CTH) and liquid water path (LWP) are compared with ground-based CTH obtained from a cloud mask created using lidar and radar data and LWP acquired from a multi-channel microwave radiometer. Clouds from all altitudes in the atmosphere are investigated. The clouds are diagnosed as single or multiple layer using the ground-based cloud mask. For single-layer clouds, satellites overestimated CTH by 326 m (14 %) on average. When including multilayer clouds, satellites underestimated CTH by on average 169 m (5.8 %). MODIS collection 6 overestimated LWP by on average 13 g mg-2 (11 %). Interestingly, LWP for MODIS collection 5.1 is slightly overestimated by Aqua (4.56 %) but is underestimated by Terra (14.3 %). This underestimation may be attributed to a known issue with a drift in the reflectance bands of the MODIS instrument on Terra. This evaluation indicates that the satellite cloud parameters selected show reasonable agreement with their ground-based counterparts over Finland, with minimal influence from the large solar zenith angle experienced by the satellites in this high-latitude location.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy