SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stahl Eli A) "

Sökning: WFRF:(Stahl Eli A)

  • Resultat 1-10 av 15
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huckins, Laura M., et al. (författare)
  • Gene expression imputation across multiple brain regions provides insights into schizophrenia risk
  • 2019
  • Ingår i: Nature genetics. - 1546-1718. ; 51:4, s. 659-
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression.
  •  
2.
  • de Jong, Simone, et al. (författare)
  • Applying polygenic risk scoring for psychiatric disorders to a large family with bipolar disorder and major depressive disorder
  • 2018
  • Ingår i: Communications Biology. - Nature Publishing Group. - 2399-3642. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (n ~ 260) in which 30% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generations. This may explain the observation of anticipation in mood disorders, whereby onset is earlier and the severity increases over the generations of a family. Joint analyses of rare and common variation may be a powerful way to understand the familial genetics of psychiatric disorders.
3.
  • Wessel, Jennifer, et al. (författare)
  • Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility
  • 2015
  • Ingår i: Nature Communications. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF = 1.4%) with lower FG (beta = -0.09 +/- 0.01 mmol l(-1), P = 3.4 x 10(-12)), T2D risk (OR[95% CI] = 0.86[0.76-0.96], P = 0.010), early insulin secretion (beta = -0.07 +/- 0.035 pmol(insulin) mmol(glucose)(-1), P = 0.048), but higher 2-h glucose (beta = 0.16 +/- 0.05 mmol l(-1), P = 4.3 x 10(-4)). We identify a gene-based association with FG at G6PC2 (p(SKAT) = 6.8 x 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF = 20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (beta = 0.02 +/- 0.004 mmol l(-1), P = 1.3 x 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.
4.
  • Stahl, Eli A, et al. (författare)
  • Genome-wide association study identifies 30 loci associated with bipolar disorder
  • 2019
  • Ingår i: Nature Genetics. - 1061-4036. ; 51:5, s. 793-803
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P < 1 × 10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (P < 5 × 10-8) in the discovery GWAS were not genome-wide significant in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis, 30 loci were genome-wide significant, including 20 newly identified loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including regulation of insulin secretion and endocannabinoid signaling. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential biological mechanisms for bipolar disorder.
  •  
5.
  • Marshall, Christian R., et al. (författare)
  • Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects
  • 2017
  • Ingår i: Nature Genetics. - 1061-4036. ; 49:1, s. 27-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (odds ratio (OR) = 1.11, P = 5.7 x 10(-15)), which persisted after excluding loci implicated in previous studies (OR = 1.07, P = 1.7 x 10(-6)). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 x 10(-11)) and neurobehavioral phenotypes in mouse (OR = 1.18, P = 7.3 x 10(-5)). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by nonallelic homologous recombination.
  •  
6.
  • Musliner, Katherine L., et al. (författare)
  • Association of Polygenic Liabilities for Major Depression, Bipolar Disorder, and Schizophrenia With Risk for Depression in the Danish Population
  • 2019
  • Ingår i: JAMA psychiatry. - Chicago : American Medical Association. - 2168-6238. ; 76:5, s. 516-525
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE: Although the usefulness of polygenic risk scores as a measure of genetic liability for major depression (MD) has been established, their association with depression in the general population remains relatively unexplored.OBJECTIVE: To evaluate whether polygenic risk scores for MD, bipolar disorder (BD), and schizophrenia (SZ) are associated with depression in the general population and explore whether these polygenic liabilities are associated with heterogeneity in terms of age at onset and severity at the initial depression diagnosis.DESIGN SETTING AND PARTICIPANTS: Participants were drawn from the Danish iPSYCH2012 case-cohort study, a representative sample drawn from the population of Denmark born between May 1, 1981, and December 31, 2005. The hazard of depression was estimated using Cox regressions modified to accommodate the case-cohort design. Case-only analyses were conducted using linear and multinomial regressions. The data analysis was conducted from February 2017 to June 2018.EXPOSURES: Polygenic risk scores for MD, BD, and SZ trained using the most recent genome-wide association study results from the Psychiatric Genomics Consortium.MAIN OUTCOMES AND MEASURES: The main outcome was first depressive episode (international Statistical Classification of Diseases and Related Health Problems, Tenth Revision [ICD-10] code F32) treated in hospital-based psychiatric care. Severity at the initial diagnosis was measured using the ICD-10 code severity specifications (mild, moderate, severe without psychosis, and severe with psychosis) and treatment setting (inpatient, outpatient, and emergency).RESULTS: Of 34 573 participants aged 10 to 31 years at censoring, 68% of those with depression were female compared with 48.9% of participants without depression. Each SD increase in polygenic liability for MD, BD, and SZ was associated with 30% (hazard ratio [HR], 1.30; 95% CI, 1.27-1.33), 5% (HR, 1.05; 95% CI, 1.02-1.07), and 12% (HR, 1.12; 95% CI, 1.09-1.15) increases in the hazard of depression, respectively. Among cases, a higher polygenic liability for BD was associated with earlier depression onset (beta =-.07; SE =.02; P =.002).CONCLUSIONS AND RELEVANCE: Polygenic ability for MD is associated with first depress on in the general population, which supports the idea that these scores tap into an underlying liability for developing the disorder. The fact that polygenic risk for BD and polygenic risk for SZ also were associated with depression is consistent with prior evidence that these disorders share some common genetic overlap. Variations in polygenic liability may contribute slightly to heterogeneity in clinical presentation, but these associations appear minimal.
  •  
7.
  • Ripke, Stephan, et al. (författare)
  • Biological insights from 108 schizophrenia-associated genetic loci
  • 2014
  • Ingår i: Nature. - 0028-0836. ; 511:7510, s. 421-427
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.
  •  
8.
  • Charney, Alexander W, et al. (författare)
  • Contribution of Rare Copy Number Variants to Bipolar Disorder Risk Is Limited to Schizoaffective Cases.
  • 2018
  • Ingår i: Biological psychiatry. - 1873-2402.
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic risk for bipolar disorder (BD) is conferred through many common alleles, while a role for rare copy number variants (CNVs) is less clear. Subtypes of BD including schizoaffective disorder bipolar type (SAB), bipolar I disorder (BD I), and bipolar II disorder (BD II) differ according to the prominence and timing of psychosis, mania, and depression. The genetic factors contributing to the combination of symptoms among these subtypes are poorly understood.Rare large CNVs were analyzed in 6353 BD cases (3833 BD I [2676 with psychosis, 850 without psychosis, and 307 with unknown psychosis history], 1436 BD II, 579 SAB, and 505 BD not otherwise specified) and 8656 controls. CNV burden and a polygenic risk score (PRS) for schizophrenia were used to evaluate the relative contributions of rare and common variants to risk of BD, BD subtypes, and psychosis.CNV burden did not differ between BD and controls when treated as a single diagnostic entity. However, burden in SAB was increased relative to controls (p = .001), BD I (p = .0003), and BD II (p = .0007). Burden and schizophrenia PRSs were increased in SAB compared with BD I with psychosis (CNV p = .0007, PRS p = .004), and BD I without psychosis (CNV p = .0004, PRS p = 3.9 × 10-5). Within BD I, psychosis was associated with increased schizophrenia PRSs (p = .005) but not CNV burden.CNV burden in BD is limited to SAB. Rare and common genetic variants may contribute differently to risk for psychosis and perhaps other classes of psychiatric symptoms.
  •  
9.
  • Lange, Leslie A, et al. (författare)
  • Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol.
  • 2014
  • Ingår i: American Journal of Human Genetics. - Cell Press. - 0002-9297. ; 94:2, s. 233-245
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98(th) or <2(nd) percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments.
  •  
10.
  • Okada, Yukinori, et al. (författare)
  • Genetics of rheumatoid arthritis contributes to biology and drug discovery
  • 2014
  • Ingår i: Nature. - Nature Publishing Group. - 0028-0836. ; 506:7488, s. 376-381
  • Tidskriftsartikel (refereegranskat)abstract
    • A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)(1). Here we performed a genome-wide association study meta-analysis in a total of &gt;100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating similar to 10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2-4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation(5), cis-acting expression quantitative trait loci(6) and pathway analyses(7-9)-as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes-to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15
  • [1]2Nästa
Åtkomst
fritt online (3)
Typ av publikation
tidskriftsartikel (15)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt (1)
Författare/redaktör
Stahl, Eli A (12)
Esko, Tonu (9)
Metspalu, Andres (9)
Hoffmann, Per (8)
Smoller, Jordan W., (7)
Bergen, Sarah E., (7)
visa fler...
Knowles, James A (7)
Mattheisen, Manuel, (6)
Cichon, Sven, (6)
Corvin, Aiden, (6)
Djurovic, Srdjan, (6)
McIntosh, Andrew M., (6)
Melle, Ingrid, (6)
Rietschel, Marcella, (6)
Del-Favero, Jurgen (6)
Degenhardt, Franzisk ... (6)
Herms, Stefan (6)
Schulze, Thomas G (6)
Werge, Thomas (6)
Hultman, Christina M ... (6)
Maier, Wolfgang (6)
Milani, Lili, (6)
Hamshere, Marian L. (6)
Ripke, Stephan, (6)
Escott-Price, Valent ... (6)
Wray, Naomi R (6)
Strohmaier, Jana (6)
Purcell, Shaun M (6)
Agartz, Ingrid, (5)
Andreassen, Ole A., (5)
Kahn, Rene S., (5)
Morris, Derek W., (5)
Ophoff, Roel A., (5)
Adolfsson, Rolf, (5)
Boehnke, Michael (5)
Freimer, Nelson B. (5)
Visscher, Peter M. (5)
Stefansson, Kari (5)
Sullivan, Patrick F. (5)
Daly, Mark J. (5)
Hougaard, David M., (5)
Gill, Michael (5)
Franke, Lude (5)
Stefánsson, Hreinn (5)
Neale, Benjamin M. (5)
Sigurdsson, Engilber ... (5)
Owen, Michael J. (5)
Mors, Ole, (5)
Pers, Tune H. (5)
Craddock, Nick, (5)
visa färre...
Lärosäte
Umeå universitet (12)
Karolinska Institutet (10)
Lunds universitet (5)
Göteborgs universitet (3)
Uppsala universitet (2)
Linköpings universitet (1)
visa fler...
Stockholms universitet (1)
visa färre...
Språk
Engelska (15)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (14)
Naturvetenskap (3)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy