SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stancakova Alena) "

Sökning: WFRF:(Stancakova Alena)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kilpelaeinen, Tuomas O., et al. (författare)
  • Physical Activity Attenuates the Influence of FTO Variants on Obesity Risk: A Meta-Analysis of 218,166 Adults and 19,268 Children
  • 2011
  • Ingår i: PLoS Medicine. - Public Library of Science. - 1549-1676. ; 8:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n=218,166) and nine studies of children and adolescents (n=19,268). Methods and Findings: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r(2)>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTOxPA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (p(interaction) = 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio = 1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio = 1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. Conclusions: The association of the FTO risk allele with the odds of obesity is attenuated by 27% in physically active adults, highlighting the importance of PA in particular in those genetically predisposed to obesity.
2.
  • Kilpelainen, Tuomas O., et al. (författare)
  • Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile.
  • 2011
  • Ingår i: Nature genetics. - 1546-1718. ; 43:8, s. 753-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between similar to 2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10(-6)) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 x 10(-26)) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 x 10(-11)) and one near SPRY2 (P = 3 x 10(-8)). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.
  •  
3.
  • Ried, Janina S., et al. (författare)
  • A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape
  • 2016
  • Ingår i: Nature Communications. - Nature Publishing Group. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.
4.
  • Ahmad, Shafqat, et al. (författare)
  • Gene × physical activity interactions in obesity: combined analysis of 111,421 individuals of European ancestry. : combined analysis of 111,421 individuals of European ancestry
  • 2013
  • Ingår i: PLoS Genetics. - Public Library of Science. - 1553-7404. ; 9:7, s. 1003607-1003607
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous obesity loci have been identified using genome-wide association studies. A UK study indicated that physical activity may attenuate the cumulative effect of 12 of these loci, but replication studies are lacking. Therefore, we tested whether the aggregate effect of these loci is diminished in adults of European ancestry reporting high levels of physical activity. Twelve obesity-susceptibility loci were genotyped or imputed in 111,421 participants. A genetic risk score (GRS) was calculated by summing the BMI-associated alleles of each genetic variant. Physical activity was assessed using self-administered questionnaires. Multiplicative interactions between the GRS and physical activity on BMI were tested in linear and logistic regression models in each cohort, with adjustment for age, age(2), sex, study center (for multicenter studies), and the marginal terms for physical activity and the GRS. These results were combined using meta-analysis weighted by cohort sample size. The meta-analysis yielded a statistically significant GRS × physical activity interaction effect estimate (Pinteraction = 0.015). However, a statistically significant interaction effect was only apparent in North American cohorts (n = 39,810, Pinteraction = 0.014 vs. n = 71,611, Pinteraction = 0.275 for Europeans). In secondary analyses, both the FTO rs1121980 (Pinteraction = 0.003) and the SEC16B rs10913469 (Pinteraction = 0.025) variants showed evidence of SNP × physical activity interactions. This meta-analysis of 111,421 individuals provides further support for an interaction between physical activity and a GRS in obesity disposition, although these findings hinge on the inclusion of cohorts from North America, indicating that these results are either population-specific or non-causal.
5.
  • Koeck, Thomas, et al. (författare)
  • A common variant in TFB1M is associated with reduced insulin secretion and increased future risk of type 2 diabetes.
  • 2011
  • Ingår i: Cell Metabolism. - Cell Press. - 1550-4131. ; 13:1, s. 80-91
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes (T2D) evolves when insulin secretion fails. Insulin release from the pancreatic β cell is controlled by mitochondrial metabolism, which translates fluctuations in blood glucose into metabolic coupling signals. We identified a common variant (rs950994) in the human transcription factor B1 mitochondrial (TFB1M) gene associated with reduced insulin secretion, elevated postprandial glucose levels, and future risk of T2D. Because islet TFB1M mRNA levels were lower in carriers of the risk allele and correlated with insulin secretion, we examined mice heterozygous for Tfb1m deficiency. These mice displayed lower expression of TFB1M in islets and impaired mitochondrial function and released less insulin in response to glucose in vivo and in vitro. Reducing TFB1M mRNA and protein in clonal β cells by RNA interference impaired complexes of the mitochondrial oxidative phosphorylation system. Consequently, nutrient-stimulated ATP generation was reduced, leading to perturbed insulin secretion. We conclude that a deficiency in TFB1M and impaired mitochondrial function contribute to the pathogenesis of T2D.
  •  
6.
  • Mardinoglu, Adil, et al. (författare)
  • Plasma Mannose Levels Are Associated with Incident Type 2 Diabetes and Cardiovascular Disease.
  • 2017
  • Ingår i: Cell metabolism. - 1932-7420. ; 26:2, s. 281-283
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma mannose levels are elevated in subjects with insulin resistance independently of obesity. Here, we found that elevated plasma mannose levels are strong markers of future risk of several chronic diseases including T2D, CVD, and albuminuria, and that it may contribute to their development rather than just being a novel biomarker.
  •  
7.
  • Morris, Andrew P., et al. (författare)
  • Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes
  • 2012
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 44:9, s. 981-981
  • Tidskriftsartikel (refereegranskat)abstract
    • To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip, including 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two showing sex-differentiated association. Genomewide analyses of these data are consistent with a long tail of additional common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signaling and cell cycle regulation, in diabetes pathogenesis.
  •  
8.
  • Scott, Robert A., et al. (författare)
  • No Interactions Between Previously Associated 2-Hour Glucose Gene Variants and Physical Activity or BMI on 2-Hour Glucose Levels
  • 2012
  • Ingår i: Diabetes. - American Diabetes Association Inc.. - 1939-327X. ; 61:5, s. 1291-1296
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene-lifestyle interactions have been suggested to contribute to the development of type 2 diabetes. Glucose levels 2 h after a standard 75-g glucose challenge are used to diagnose diabetes and are associated with both genetic and lifestyle factors. However, whether these factors interact to determine 2-h glucose levels is unknown. We meta-analyzed single nucleotide polymorphism (SNP) X BMI and SNP x physical activity (PA) interaction regression models for five SNPs previously associated with 2-h glucose levels from up to 22 studies comprising 54,884 individuals without diabetes. PA levels were dichotomized, with individuals below the first quintile classified as inactive (20%) and the remainder as active (80%). BMI was considered a continuous trait. Inactive individuals had higher 2-h glucose levels than active individuals (beta = 0.22 mmol/L [95% CI 0.13-0.31], P = 1.63 X 10(-6)). All SNPs were associated with 2-h glucose (beta = 0.06-0.12 mmol/allele, P <= 1.53 X 10(-7)), but no significant interactions were found with PA (P > 0.18) or BMI (P >= 0.04). In this large study of gene-lifestyle interaction, we observed no interactions between genetic and lifestyle factors, both of which were associated with 2-h glucose. It is perhaps unlikely that top loci from genome-wide association studies will exhibit strong subgroup-specific effects, and may not, therefore, make the best candidates for the study of interactions. Diabetes 61:1291-1296, 2012
  •  
9.
  • Strawbridge, Rona J., et al. (författare)
  • Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes
  • 2011
  • Ingår i: Diabetes. - American Diabetes Association Inc.. - 1939-327X. ; 60:10, s. 2624-2634
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired beta-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS-We have conducted a meta-analysis of genome-wide association tests of similar to 2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS-Nine SNPs at eight loci were associated with proinsulin levels (P < 5 x 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC3OA8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 x 10(-4)), improved beta-cell function (P = 1.1 x 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 x 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS-We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis. Diabetes 60:2624-2634, 2011
  •  
10.
  • Wessel, Jennifer, et al. (författare)
  • Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility
  • 2015
  • Ingår i: Nature communications. - 2041-1723. ; 6, s. 5897
  • Tidskriftsartikel (refereegranskat)abstract
    • Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=-0.09±0.01 mmol l(-1), P=3.4 × 10(-12)), T2D risk (OR[95%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (β=-0.07±0.035 pmolinsulin mmolglucose(-1), P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l(-1), P=4.3 × 10(-4)). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l(-1), P=1.3 × 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.
Skapa referenser, mejla, bekava och länka
Åtkomst
fritt online (22)
Typ av publikation
tidskriftsartikel (103)
Typ av innehåll
refereegranskat (103)
övrigt vetenskapligt (4)
Författare/redaktör
Stancáková, Alena, (105)
Laakso, Markku, (97)
Kuusisto, Johanna, (96)
Langenberg, Claudia (88)
Wareham, Nicholas J (81)
Boehnke, Michael (79)
visa fler...
Jackson, Anne U. (72)
Mohlke, Karen L (69)
Collins, Francis S. (69)
Loos, Ruth J. F. (67)
Luan, Jian'an (66)
Lind, Lars, (65)
Scott, Robert A (64)
Salomaa, Veikko (64)
Hayward, Caroline (64)
Gudnason, Vilmundur (60)
Ingelsson, Erik (60)
McCarthy, Mark I (59)
Esko, Tonu (58)
Tuomilehto, Jaakko (58)
Boerwinkle, Eric (58)
Zhang, Weihua (58)
Gieger, Christian (56)
Froguel, Philippe, (55)
Barroso, Inês (55)
Harris, Tamara B. (54)
Morris, Andrew P. (53)
Lakka, Timo A. (53)
Hofman, Albert (52)
Rudan, Igor (52)
Prokopenko, Inga (51)
Franks, Paul W, (50)
Metspalu, Andres (50)
Chambers, John C. (50)
Amin, Najaf (49)
Uitterlinden, Andre ... (49)
Deloukas, Panos (49)
Hansen, Torben, (49)
Peters, Annette (49)
Rauramaa, Rainer (49)
Zhao, Jing Hua (48)
Stringham, Heather M ... (48)
Kooner, Jaspal S. (48)
Van Duijn, Cornelia ... (47)
Chasman, Daniel I., (47)
Pedersen, Oluf, (46)
Grarup, Niels, (45)
Ferreira, Teresa (45)
Campbell, Harry (45)
Lindgren, Cecilia M. (45)
visa färre...
Lärosäte
Uppsala universitet (35)
Lunds universitet (31)
Umeå universitet (28)
Karolinska Institutet (23)
Göteborgs universitet (16)
Kungliga Tekniska Högskolan (2)
visa fler...
Stockholms universitet (2)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (103)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (101)
Naturvetenskap (5)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy