SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stanton Alice) ;pers:(Shields Denis C.)"

Sökning: WFRF:(Stanton Alice) > Shields Denis C.

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Postmus, Iris, et al. (författare)
  • Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins.
  • 2014
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response.
  •  
2.
  • Asselbergs, Folkert W., et al. (författare)
  • Large-Scale Gene-Centric Meta-analysis across 32 Studies Identifies Multiple Lipid Loci
  • 2012
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 91:5, s. 823-838
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWASs) have identified many SNPs underlying variations in plasma-lipid levels. We explore whether additional loci associated with plasma-lipid phenotypes, such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TGs), can be identified by a dense gene-centric approach. Our meta-analysis of 32 studies in 66,240 individuals of European ancestry was based on the custom similar to 50,000 SNP genotyping array (the ITMAT-Broad-CARe array) covering similar to 2,000 candidate genes. SNP-lipid associations were replicated either in a cohort comprising an additional 24,736 samples or within the Global Lipid Genetic Consortium. We identified four, six, ten, and four unreported SNPs in established lipid genes for HDL-C, LDL-C, TC, and TGs, respectively. We also identified several lipid-related SNPs in previously unreported genes: DGAT2, HCAR2, GPIHBP1, PPARG, and FTO for HDL-C; SOCS3, APOH, SPTY2D1, BRCA2, and VLDLR for LDL-C; SOCS3, UGT1A1, BRCA2, UBE3B, FCGR2A, CHUK, and INSIG2 for TC; and SERPINF2, C4B, GCK, GATA4, INSR, and LPAL2 for TGs. The proportion of explained phenotypic variance in the subset of studies providing individual-level data was 9.9% for HDL-C, 9.5% for LDL-C, 10.3% for TC, and 8.0% for TGs. This large meta-analysis of lipid phenotypes with the use of a dense gene-centric approach identified multiple SNPs not previously described in established lipid genes and several previously unknown loci. The explained phenotypic variance from this approach was comparable to that from a meta-analysis of GWAS data, suggesting that a focused genotyping approach can further increase the understanding of heritability of plasma lipids.
  •  
3.
  • Evangelou, Evangelos, et al. (författare)
  • Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.
  • 2018
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:10, s. 1412-1425
  • Tidskriftsartikel (refereegranskat)abstract
    • High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
  •  
4.
  • Johnson, Toby, et al. (författare)
  • Blood Pressure Loci Identified with a Gene-Centric Array.
  • 2011
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 1537-6605 .- 0002-9297. ; 89:6, s. 688-700
  • Tidskriftsartikel (refereegranskat)abstract
    • Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56× 10(-7) study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r(2) = 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1 reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p < 8.56× 10(-7) at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascertained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample size is smaller than that in previous studies.
  •  
5.
  • Talmud, Philippa J., et al. (författare)
  • Gene-centric Association Signals for Lipids and Apolipoproteins Identified via the HumanCVD BeadChip
  • 2009
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 85:5, s. 628-642
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood lipids are important cardiovascular disease (CVD) risk factors with both genetic and environmental determinants. The Whitehall II study (n = 5592) was genotyped with the gene-centric HumanCVD BeadChip (Illumina). We identified 195 SNPs in 16 genes/regions associated with 3 major lipid fractions and 2 apolipoprotein components at p < 10(-5), with the associations being broadly concordant with prior genome-wide analysis. SNPs associated with LDL cholesterol and apolipoprotein B were located in LDLR, PCSK9, APOB, CELSR2, HWGCR, CETP, the TOMM40-APOE-C1-C2-C4 cluster, and the APOA5-A4-C3-A1 cluster; SNPs associated with HDL cholesterol and apolipoprotein AI were in CETP, LPL, LIPC, APOA5-A4-C3-A1, and ABCA1; and SNPs associated with triglycerides in GCKR, BAZIB, MLXIPL, LPL, and APOA5-A4-C3-A1. For 48 SNPs in previously unreported loci that were significant at p < 10(-4) in Whitehall II, in silico analysis including the British Women's Heart and Health Study, BRIGHT, ASCOT, and NORDIL studies (total n > 12,500) revealed previously unreported associations of SH2B3 (p < 2.2 x 10(-6)), BMPR2 (p < 2.3 x 10(-7)), BCL3/PVRL2 (flanking APOE; p < 4.4 x 10(-8)), and SMARCA4 (flanking LDLR; p < 2.5 x 10(-7)) with LDL cholesterol. Common alleles in these genes explained 6.1%-14.7% of the variance in the five lipid-related traits, and individuals at opposite tails of the additive allele score exhibited substantial differences in trait levels (e.g., > 1 mmol/L in LDL cholesterol [similar to 1 SD of the trait distribution]). These data suggest that multiple common alleles of small effect can make important contributions to individual differences in blood lipids potentially relevant to the assessment of CVD risk. These genes provide further insights into lipid metabolism and the likely effects of modifying the encoded targets therapeutically.
  •  
6.
  • Wain, Louise V., et al. (författare)
  • Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney
  • 2017
  • Ingår i: Hypertension. - 0194-911X .- 1524-4563. ; 70:3, s. e4-e19
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA. Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy