SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stattin Evalena) ;pers:(Dahl Niklas)"

Sökning: WFRF:(Stattin Evalena) > Dahl Niklas

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Stattin, Eva-Lena, et al. (författare)
  • SNX10 gene mutation leading to osteopetrosis with dysfunctional osteoclasts
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Autosomal recessive osteopetrosis (ARO) is a heterogeneous disorder, characterized by defective osteoclastic resorption of bone that results in increased bone density. We have studied nine individuals with an intermediate form of ARO, from the county of Vasterbotten in Northern Sweden. All afflicted individuals had an onset in early infancy with optic atrophy, and in four patients anemia was present at diagnosis. Tonsillar herniation, foramen magnum stenosis, and severe osteomyelitis of the jaw were common clinical features. Whole exome sequencing, verified by Sanger sequencing, identified a splice site mutation c.212 + 1 G > T in the SNX10 gene encoding sorting nexin 10. Sequence analysis of the SNX10 transcript in patients revealed activation of a cryptic splice site in intron 4 resulting in a frame shift and a premature stop (p.S66Nfs * 15). Haplotype analysis showed that all cases originated from a single mutational event, and the age of the mutation was estimated to be approximately 950 years. Functional analysis of osteoclast progenitors isolated from peripheral blood of patients revealed that stimulation with receptor activator of nuclear factor kappa-B ligand (RANKL) resulted in a robust formation of large, multinucleated osteoclasts which generated sealing zones; however these osteoclasts exhibited defective ruffled borders and were unable to resorb bone in vitro.
  •  
2.
  • Höijer, Ida, et al. (författare)
  • Detailed analysis of HTT repeat elements in human blood using targeted amplification-free long-read sequencing
  • 2018
  • Ingår i: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 39:9, s. 1262-1272
  • Tidskriftsartikel (refereegranskat)abstract
    • Amplification of DNA is required as a mandatory step during library preparation in most targeted sequencing protocols. This can be a critical limitation when targeting regions that are highly repetitive or with extreme guanine-cytosine (GC) content, including repeat expansions associated with human disease. Here, we used an amplification-free protocol for targeted enrichment utilizing the CRISPR/Cas9 system (No-Amp Targeted sequencing) in combination with single molecule, real-time (SMRT) sequencing for studying repeat elements in the huntingtin (HTT) gene, where an expanded CAG repeat is causative for Huntington disease. We also developed a robust data analysis pipeline for repeat element analysis that is independent of alignment of reads to a reference genome. The method was applied to 11 diagnostic blood samples, and for all 22 alleles the resulting CAG repeat count agreed with previous results based on fragment analysis. The amplification-free protocol also allowed for studying somatic variability of repeat elements in our samples, without the interference of PCR stutter. In summary, with No-Amp Targeted sequencing in combination with our analysis pipeline, we could accurately study repeat elements that are difficult to investigate using PCR-based methods.
  •  
3.
  • Stattin, Evalena, et al. (författare)
  • Cohort profile: the Swedish study of SUDden cardiac Death in the Young (SUDDY) 2000-2010: a complete nationwide cohort of SCDs
  • 2022
  • Ingår i: Bmj Open. - : BMJ. - 2044-6055. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose The rationale behind the SUDden cardiac Death in the Young (SUDDY) cohort was to provide a complete nationwide, high-quality platform with integrated multisource data, for clinical and genetic research on sudden cardiac death (SCD) in the young, with the ultimate goal to predict and prevent SCD. Participants The cohort contains all SCD victims <36 years, in Sweden during the period 2000-2010. We assigned five population-based controls per case, together with parents of cases and controls, in total 15 633 individuals. Data of all individuals were extracted from multiple mandatory registries; the National Patient Registry, the Medical Birth Registry, the Prescribed Drug registry, the Cause of Death registry, the Multigeneration Registry, combined with socioeconomic data from Statistics Sweden. From SCD victims, the autopsy report, medical records, ECGs, parental information and biological samples were gathered. Findings to date We identified 903 individuals diagnosed with SCD (67% men, 33% women). The cases comprised 236 infants <1 year of age (26%), 90 individuals aged 1-15 years (10%), 186 individuals aged 15-25 years (21%) and 391 aged 25-35 years (43%). Hospitalisations and outpatient clinic visits due to syncope were significantly more common among cases than controls. DNA obtained from dried blood spots tests (DBS) stored from birth was equally suitable as venous blood samples for high-throughput genetic analysis of SCD cases. Future plans We will explore the SUDDY cohort for symptoms and healthcare consumption, socioeconomic variables and family history of SCD. Furthermore, we will perform whole exome sequencing analysis on DNA of cases obtained from DBS or postmortem samples together with parental blood samples in search for gene variants associated with cardiac disease. The genetic analysis together with data compiled in the nationwide cohort is expected to improve current knowledge on the incidence, aetiology, clinical characteristics and family history of SCD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy