SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Steck S.) ;pers:(Mengistu Tsidu G.)"

Sökning: WFRF:(Steck S.) > Mengistu Tsidu G.

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Glatthor, N., et al. (författare)
  • Retrieval of stratospheric ozone profiles from MIPAS/ENVISAT limb emission spectra : a sensitivity study
  • 2006
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 6:10, s. 2767-2781
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the dependence of ozone volume mixing ratio profiles, retrieved from limb emission infrared spectra of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), on different retrieval setups such as the treatment of the background continuum, cloud filtering, spectral regions used for analysis and a series of further more technical parameter choices. The purpose of this investigation is to better understand the error sources of the ozone retrieval, to optimize the current retrieval setup and to document changes in the data versions. It was shown that the cloud clearing technique used so far (cloud index 1.8) does not reliably exclude all cloud-contaminated spectra from analysis. Through analysis of spectra calculated for cloudy atmospheres we found that the cloud index should be increased to a value of 3.0 or higher. Further, it was found that assignment of a common background continuum to adjacent microwindows within 5 cm−1 is advantageous, because it sufficiently represents the continuum emission by aerosols, clouds and gases as reported in the literature, and is computationally more efficient. For ozone retrieval we use ozone lines from MIPAS band A (685–970 cm−1) and band AB (1020–1170 cm−1) as well. Therefore we checked ozone retrievals with lines from bands A or AB only for a systematic difference. Such a difference was indeed found and could, to a major part, be attributed to the spectroscopic data used in these two bands, and to a minor part to neglection of modelling of non-local thermodynamic (non-LTE) emissions. Another potential explanation, a bias in the radiance calibration of level-1B spectra of bands A and AB, could largely be ruled out by correlation analysis and inspection of broadband spectra. Further upgrades in the ozone retrieval consist of application of an all-zero a-priori profile and a weaker regularization. Finally, the ozone distribution obtained with the new retrieval setup (data versions V3o_O3_7) was compared to the data version used before (V2_O3_2). Differences are smaller than $\pm$0.4 ppmv in the altitude region 15–50 km. Further, differences to ozone measured by the HALogen Occultation Experiment (HALOE) on the Upper Atmospheric Research Satellite (UARS) are partly reduced with the new MIPAS data version.
  •  
2.
  • Wang, D.Y., et al. (författare)
  • Validation of nitric acid retrieved by the IMK-IAA processor from MIPAS/ENVISAT measurements
  • 2007
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 7, s. 721-738
  • Tidskriftsartikel (refereegranskat)abstract
    • The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the ENVISAT satellite provides profiles of temperature and various trace-gases from limb-viewing mid-infrared emission measurements. The stratospheric nitric acid (HNO(3)) from September 2002 to March 2004 was retrieved from the MIPAS observations using the science-oriented data processor developed at the Institut fur Meteorologie und Klimaforschung (IMK), which is complemented by the component of non-local thermodynamic equilibrium (non-LTE) treatment from the Instituto de Astrofisica de Andalucia (IAA). The IMK-IAA research product, different from the ESA operational product, is validated in this paper by comparison with a number of reference data sets. Individual HNO3 profiles of the IMK-IAA MIPAS show good agreement with those of the balloon-borne version of MIPAS (MIPAS-B) and the infrared spectrometer MkIV, with small differences of less than 0.5 ppbv throughout the entire altitude range up to about 38 km, and below 0.2 ppbv above 30 km. However, the degree of consistency is largely affected by their temporal and spatial coincidence, and differences of 1 to 2 ppbv may be observed between 22 and 26 km at high latitudes near the vortex boundary, due to large horizontal inhomogeneity of HNO(3). Statistical comparisons of MIPAS IMK-IAA HNO(3) VMRs with respect to those of satellite measurements of Odin/SMR, ILAS-II, ACE-FTS, as well as the MIPAS ESA product show good consistency. The mean differences are generally +/- 0.5 ppbv and standard deviations of the differences are of 0.5 to 1.5 ppbv. The maximum differences are 2.0 ppbv around 20 to 25 km. This gives confidence in the general reliability of MIPAS HNO(3) VMR data and the other three satellite data sets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy