SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Stenhouse A) "

Search: WFRF:(Stenhouse A)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Campbell, PJ, et al. (author)
  • Pan-cancer analysis of whole genomes
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Journal article (peer-reviewed)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
4.
  •  
5.
  •  
6.
  • Lakens, Daniel, et al. (author)
  • Justify your alpha
  • 2018
  • In: Nature Human Behaviour. - : Nature Publishing Group. - 2397-3374. ; 2:3, s. 168-171
  • Journal article (peer-reviewed)abstract
    • In response to recommendations to redefine statistical significance to P ≤ 0.005, we propose that researchers should transparently report and justify all choices they make when designing a study, including the alpha level.
  •  
7.
  • Noble, Daniel W.A., et al. (author)
  • Data Descriptor : A comprehensive database of thermal developmental plasticity in reptiles
  • 2018
  • In: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 5
  • Journal article (peer-reviewed)abstract
    • How temperature influences development has direct relevance to ascertaining the impact of climate change on natural populations. Reptiles have served as empirical models for understanding how the environment experienced by embryos can influence phenotypic variation, including sex ratio, phenology and survival. Such an understanding has important implications for basic eco-evolutionary theory and conservation efforts worldwide. While there is a burgeoning empirical literature of experimental manipulations of embryonic thermal environments, addressing widespread patterns at a comparative level has been hampered by the lack of accessible data in a format that is amendable to updates as new studies emerge. Here, we describe a database with nearly 10, 000 phenotypic estimates from 155 species of reptile, collected from 300 studies manipulating incubation temperature (published between 1974-2016). The data encompass various morphological, physiological, behavioural and performance traits along with growth rates, developmental timing, sex ratio and survival (e.g., hatching success). This resource will serve as an important data repository for addressing overarching questions about thermal plasticity of reptile embryos.
  •  
8.
  • Nielsen, Scott E., et al. (author)
  • Environmental, biological and anthropogenic effects on grizzly bear body size : temporal and spatial considerations
  • 2013
  • In: BMC Ecology. - : Springer Science and Business Media LLC. - 1472-6785. ; 13, s. 31-
  • Journal article (peer-reviewed)abstract
    • Background: Individual body growth is controlled in large part by the spatial and temporal heterogeneity of, and competition for, resources. Grizzly bears (Ursus arctos L.) are an excellent species for studying the effects of resource heterogeneity and maternal effects (i.e. silver spoon) on life history traits such as body size because their habitats are highly variable in space and time. Here, we evaluated influences on body size of grizzly bears in Alberta, Canada by testing six factors that accounted for spatial and temporal heterogeneity in environments during maternal, natal and 'capture' (recent) environments. After accounting for intrinsic biological factors (age, sex), we examined how body size, measured in mass, length and body condition, was influenced by: (a) population density; (b) regional habitat productivity; (c) inter-annual variability in productivity (including silver spoon effects); (d) local habitat quality; (e) human footprint (disturbances); and (f) landscape change. Results: We found sex and age explained the most variance in body mass, condition and length (R-2 from 0.48-0.64). Inter-annual variability in climate the year before and of birth (silver spoon effects) had detectable effects on the three-body size metrics (R-2 from 0.04-0.07); both maternal (year before birth) and natal (year of birth) effects of precipitation and temperature were related with body size. Local heterogeneity in habitat quality also explained variance in body mass and condition (R-2 from 0.01-0.08), while annual rate of landscape change explained additional variance in body length (R-2 of 0.03). Human footprint and population density had no observed effect on body size. Conclusions: These results illustrated that body size patterns of grizzly bears, while largely affected by basic biological characteristics (age and sex), were also influenced by regional environmental gradients the year before, and of, the individual's birth thus illustrating silver spoon effects. The magnitude of the silver spoon effects was on par with the influence of contemporary regional habitat productivity, which showed that both temporal and spatial influences explain in part body size patterns in grizzly bears. Because smaller bears were found in colder and less-productive environments, we hypothesize that warming global temperatures may positively affect body mass of interior bears.
  •  
9.
  • Shafer, Aaron B. A., et al. (author)
  • Linking genotype, ecotype, and phenotype in an intensively managed large carnivore
  • 2014
  • In: Evolutionary Applications. - : Wiley. - 1752-4571. ; 7:2, s. 301-312
  • Journal article (peer-reviewed)abstract
    • Numerous factors influence fitness of free-ranging animals, yet often these are uncharacterized. We integrated GPS habitat use data and genetic profiling to determine their influence on fitness proxies (mass, length, and body condition) in a threatened population of grizzly bears (Ursus arctos) in Alberta, Canada. We detected distinct genetic and habitat use (ecotype) clusters, with individual cluster assignments, or genotype/ecotype, being correlated (Pearson r=0.34, P<0.01). Related individuals showed evidence of similar habitat use patterns, irrespective of geographic distance and sex. Fitness proxies were influenced by sex, age, and habitat use, and homozygosity had a positive effect on these proxies that could be indicative of outbreeding depression. We further documented over 300 translocations occurring in the province since the 1970s, often to areas with significantly different habitat. We argue this could be unintentionally causing the pattern of outbreeding, although the heterozygosity correlation may instead be explained by the energetic costs associated with larger body size. The observed patterns, together with the unprecedented human-mediated migrations, make understanding the link between genotype, ecotype, and phenotype and mechanisms behind the negative heterozygosity-fitness correlations critical for management and conservation of this species.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view