SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stenseth Nils Chr.) ;hsvcat:1"

Sökning: WFRF:(Stenseth Nils Chr.) > Naturvetenskap

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barth, Julia M.I., et al. (författare)
  • Genome architecture enables local adaptation of Atlantic cod despite high connectivity
  • 2017
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 26:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Adaptation to local conditions is a fundamental process in evolution; however, mechanisms maintaining local adaptation despite high gene flow are still poorly understood. Marine ecosystems provide a wide array of diverse habitats that frequently promote ecological adaptation even in species characterized by strong levels of gene flow. As one example, populations of the marine fish Atlantic cod (Gadus morhua) are highly connected due to immense dispersal capabilities but nevertheless show local adaptation in several key traits. By combining population genomic analyses based on 12K single nucleotide polymorphisms with larval dispersal patterns inferred using a biophysical ocean model, we show that Atlantic cod individuals residing in sheltered estuarine habitats of Scandinavian fjords mainly belong to offshore oceanic populations with considerable connectivity between these diverse ecosystems. Nevertheless, we also find evidence for discrete fjord populations that are genetically differentiated from offshore populations, indicative of local adaptation, the degree of which appears to be influenced by connectivity. Analyses of the genomic architecture reveal a significant overrepresentation of a large ~5 Mb chromosomal rearrangement in fjord cod, previously proposed to comprise genes critical for the survival at low salinities. This suggests that despite considerable connectivity with offshore populations, local adaptation to fjord environments may be enabled by suppression of recombination in the rearranged region. Our study provides new insights into the potential of local adaptation in high gene flow species within fine geographical scales and highlights the importance of genome architecture in analyses of ecological adaptation.
  •  
2.
  • Blenckner, Thorsten, et al. (författare)
  • Climate and fishing steer ecosystem regeneration to uncertain economic futures
  • 2015
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 282:1803
  • Tidskriftsartikel (refereegranskat)abstract
    • Overfishing of large predatory fish populations has resulted in lasting restructurings of entire marine food webs worldwide, with serious socioeconomic consequences. Fortunately, some degraded ecosystems show signs of recovery. A key challenge for ecosystem management is to anticipate the degree to which recovery is possible. By applying a statistical food-web model, using the Baltic Sea as a case study, we show that under current temperature and salinity conditions, complete recovery of this heavily altered ecosystem will be impossible. Instead, the ecosystem regenerates towards a new ecological baseline. This new baseline is characterized by lower and more variable biomass of cod, the commercially most important fish stock in the Baltic Sea, even under very low exploitation pressure. Furthermore, a socio-economic assessment shows that this signal is amplified at the level of societal costs, owing to increased uncertainty in biomass and reduced consumer surplus. Specifically, the combined economic losses amount to approximately 120 million E per year, which equals half of today's maximum economic yield for the Baltic cod fishery. Our analyses suggest that shifts in ecological and economic baselines can lead to higher economic uncertainty and costs for exploited ecosystems, in particular, under climate change.
  •  
3.
  • Yang, Bao, et al. (författare)
  • Long-term decrease in Asian monsoon rainfall and abrupt climate change events over the past 6,700 years
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - Washington : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:30
  • Tidskriftsartikel (refereegranskat)abstract
    • Asian summer monsoon (ASM) variability and its long-term ecological and societal impacts extending back to Neolithic times are poorly understood due to a lack of high-resolution climate proxy data. Here, we present a precisely dated and well-calibrated treering stable isotope chronology from the Tibetan Plateau with 1- to 5-y resolution that reflects high- to low-frequency ASM variability from 4680 BCE to 2011 CE. Superimposed on a persistent drying trend since the mid-Holocene, a rapid decrease in moisture availability between similar to 2000 and similar to 1500 BCE caused a dry hydroclimatic regime from similar to 1675 to similar to 1185 BCE, with mean precipitation estimated at 42 +/- 4% and 5 +/- 2% lower than during themid-Holocene and the instrumental period, respectively. This second-millennium-BCE megadrought marks the mid-to late Holocene transition, during which regional forests declined and enhanced aeolian activity affected northern Chinese ecosystems. We argue that this abrupt aridification starting similar to 2000 BCE contributed to the shift of Neolithic cultures in northern China and likely triggered human migration and societal transformation.
  •  
4.
  • Fu, Yongshuo H., et al. (författare)
  • Global warming is increasing the discrepancy between green (actual) and thermal (potential) seasons of temperate trees
  • 2023
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 29:5, s. 1377-1389
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past decades, global warming has led to a lengthening of the time window during which temperatures remain favorable for carbon assimilation and tree growth, resulting in a lengthening of the green season. The extent to which forest green seasons have tracked the lengthening of this favorable period under climate warming, however, has not been quantified to date. Here, we used remote sensing data and long-term ground observations of leaf-out and coloration for six dominant species of European trees at 1773 sites, for a total of 6060 species–site combinations, during 1980–2016 and found that actual green season extensions (GS: 3.1 ± 0.1 day decade−1) lag four times behind extensions of the potential thermal season (TS: 12.6 ± 0.1 day decade−1). Similar but less pronounced differences were obtained using satellite-derived vegetation phenology observations, that is, a lengthening of 4.4 ± 0.13 and 7.5 ± 0.13 day decade−1 for GS and TS, respectively. This difference was mainly driven by the larger advance in the onset of the thermal season compared to the actual advance of leaf-out dates (spring mismatch: 7.2 ± 0.1 day decade−1), but to a less extent caused by a phenological mismatch between GS and TS in autumn (2.4 ± 0.1 day decade−1). Our results showed that forest trees do not linearly track the new thermal window extension, indicating more complex interactions between winter and spring temperatures and photoperiod and a justification of demonstrating that using more sophisticated models that include the influence of chilling and photoperiod is needed to accurately predict spring phenological changes under warmer climate. They urge caution if such mechanisms are omitted to predict, for example, how vegetative health and growth, species distribution and crop yields will change in the future.
  •  
5.
  • Björklund, Mats, et al. (författare)
  • Quantitative Trait Evolution and Environmental Change
  • 2009
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 4:2, s. e4521-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Given the recent changes in climate, there is an urgent need to understand the evolutionary ability of populations to respond to these changes. Methodology/Principal Findings: We performed individual-based simulations with different shapes of the fitness curve, different heritabilities, different levels of density compensation, and different autocorrelation of environmental noise imposed on an environmental trend to study the ability of a population to adapt to changing conditions. The main finding is that when there is a positive autocorrelation of environmental noise, the outcome of the evolutionary process is much more unpredictable compared to when the noise has no autocorrelation. In addition, we found that strong selection resulted in a higher load, and more extinctions, and that this was most pronounced when heritability was low. The level of density-compensation was important in determining the variance in load when there was strong selection, and when genetic variance was lower when the level of density-compensation was low. Conclusions: The strong effect of the details of the environmental fluctuations makes predictions concerning the evolutionary future of populations very hard to make. In addition, to be able to make good predictions we need information on heritability, fitness functions and levels of density compensation. The results strongly suggest that patterns of environmental noise must be incorporated in future models of environmental change, such as global warming.
  •  
6.
  • Jonzén, Niclas, et al. (författare)
  • Bird migration and climate - Introduction
  • 2007
  • Ingår i: Climate Research. - : Inter-Research Science Center. - 1616-1572 .- 0936-577X. ; 35:1-2, s. 1-3
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
7.
  •  
8.
  • Jonzén, Niclas, et al. (författare)
  • Rapid advance of spring arrival dates in long-distance migratory birds
  • 2006
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 312:5782, s. 1959-1961
  • Tidskriftsartikel (refereegranskat)abstract
    • Several bird species have advanced the timing of their spring migration in response to recent climate change. European short-distance migrants, wintering in temperate areas, have been assumed to be more affected by change in the European climate than long-distance migrants wintering in the tropics. However, we show that tong-distance migrants have advanced their spring arrival in Scandinavia more than short-distance migrants. By analyzing a long-term data set from southern Italy, we show that long-distance migrants also pass through the Mediterranean region earlier. We argue that this may reflect a climate-driven evolutionary change in the timing of spring migration.
  •  
9.
  • Jonzén, Niclas, et al. (författare)
  • Response to comment on "Rapid advance of spring arrival dates in long-distance migratory birds"
  • 2007
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 315:5812, s. 598-598
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Both's comment questions our suggestion that the advanced spring arrival time of long-distance migratory birds in Scandinavia and the Mediterranean may reflect a climate-driven evolutionary change. We present additional arguments to support our hypothesis but underscore the importance of additional studies involving direct tests of evolutionary change.
  •  
10.
  • Knudsen, Endre, et al. (författare)
  • Challenging claims in the study of migratory birds and climate change.
  • 2011
  • Ingår i: Biological Reviews. - 1469-185X. ; 86, s. 928-946
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent shifts in phenology in response to climate change are well established but often poorly understood. Many animals integrate climate change across a spatially and temporally dispersed annual life cycle, and effects are modulated by ecological interactions, evolutionary change and endogenous control mechanisms. Here we assess and discuss key statements emerging from the rapidly developing study of changing spring phenology in migratory birds. These well-studied organisms have been instrumental for understanding climate-change effects, but research is developing rapidly and there is a need to attack the big issues rather than risking affirmative science. Although we agree poorly on the support for most claims, agreement regarding the knowledge basis enables consensus regarding broad patterns and likely causes. Empirical data needed for disentangling mechanisms are still scarce, and consequences at a population level and on community composition remain unclear. With increasing knowledge, the overall support ('consensus view') for a claim increased and between-researcher variability in support ('expert opinions') decreased, indicating the importance of assessing and communicating the knowledge basis. A proper integration across biological disciplines seems essential for the field's transition from affirming patterns to understanding mechanisms and making robust predictions regarding future consequences of shifting phenologies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy