SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stenseth Nils Chr.) ;pers:(Ranta Esa)"

Sökning: WFRF:(Stenseth Nils Chr.) > Ranta Esa

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björklund, Mats, et al. (författare)
  • Quantitative Trait Evolution and Environmental Change
  • 2009
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 4:2, s. e4521-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Given the recent changes in climate, there is an urgent need to understand the evolutionary ability of populations to respond to these changes. Methodology/Principal Findings: We performed individual-based simulations with different shapes of the fitness curve, different heritabilities, different levels of density compensation, and different autocorrelation of environmental noise imposed on an environmental trend to study the ability of a population to adapt to changing conditions. The main finding is that when there is a positive autocorrelation of environmental noise, the outcome of the evolutionary process is much more unpredictable compared to when the noise has no autocorrelation. In addition, we found that strong selection resulted in a higher load, and more extinctions, and that this was most pronounced when heritability was low. The level of density-compensation was important in determining the variance in load when there was strong selection, and when genetic variance was lower when the level of density-compensation was low. Conclusions: The strong effect of the details of the environmental fluctuations makes predictions concerning the evolutionary future of populations very hard to make. In addition, to be able to make good predictions we need information on heritability, fitness functions and levels of density compensation. The results strongly suggest that patterns of environmental noise must be incorporated in future models of environmental change, such as global warming.
  •  
2.
  • Knudsen, Endre, et al. (författare)
  • Challenging claims in the study of migratory birds and climate change.
  • 2011
  • Ingår i: Biological Reviews. - 1469-185X. ; 86, s. 928-946
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent shifts in phenology in response to climate change are well established but often poorly understood. Many animals integrate climate change across a spatially and temporally dispersed annual life cycle, and effects are modulated by ecological interactions, evolutionary change and endogenous control mechanisms. Here we assess and discuss key statements emerging from the rapidly developing study of changing spring phenology in migratory birds. These well-studied organisms have been instrumental for understanding climate-change effects, but research is developing rapidly and there is a need to attack the big issues rather than risking affirmative science. Although we agree poorly on the support for most claims, agreement regarding the knowledge basis enables consensus regarding broad patterns and likely causes. Empirical data needed for disentangling mechanisms are still scarce, and consequences at a population level and on community composition remain unclear. With increasing knowledge, the overall support ('consensus view') for a claim increased and between-researcher variability in support ('expert opinions') decreased, indicating the importance of assessing and communicating the knowledge basis. A proper integration across biological disciplines seems essential for the field's transition from affirming patterns to understanding mechanisms and making robust predictions regarding future consequences of shifting phenologies.
  •  
3.
  • Ranta, Esa, et al. (författare)
  • Environmental forcing and genetic differentiation in subdivided populations
  • 2008
  • Ingår i: Evolutionary Ecology Research. - 1522-0613 .- 1937-3791. ; 10:1, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Questions: How will genetic differentiation and genetic drift in spatially structured populations be affected by different classes of autocorrelated environmental noise? How does dispersal interact with fluctuations generated from the demographic and environmental forcing in shaping the neutral genetic patterns? Model and key assumptions: Populations are regulated locally by density-dependent feedback including demographic stochasticity but they are also here forced by environmental noise (white, red, and blue noise corresponding to random, positive, and negative autocorrelation respectively). Spatial structure consists of a looped string of populations connected by dispersal and each with a predefined carrying capacity (one-dimensional stepping stone structure). Method: Simulations initialized by randomly distributing individuals, and thus genotypes, in space (no fitness differences, no mutation, no recombination, no selection). Conclusions: In an unpredictable way, red noise reinforces the genetic differentiation among populations more than white or blue noise. Dispersal appears unable to dilute the differentiation effect of positively autocorrelated forcing. In modelling the effect of environmental stochasticity, details about the type of environmental noise are of paramount importance for the results and their biological and management implications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy