SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Stephan S.) ;lar1:(miun)"

Search: WFRF:(Stephan S.) > Mid Sweden University

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kehoe, Laura, et al. (author)
  • Make EU trade with Brazil sustainable
  • 2019
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Journal article (other academic/artistic)
  •  
2.
  • Liu, Sirui, et al. (author)
  • Design of Hygroscopic Bioplastic Products Stable in Varying Humidities
  • 2023
  • In: Macromolecular materials and engineering. - : Wiley. - 1438-7492 .- 1439-2054. ; 308:2
  • Journal article (peer-reviewed)abstract
    • Hygroscopic biopolymers like proteins and polysaccharides suffer from humidity-dependent mechanical properties. Because humidity can vary significantly over the year, or even within a day, these polymers will not generally have stable properties during their lifetimes. On wheat gluten, a model highly hygroscopic biopolymer material, it is observed that larger/thicker samples can be significantly more mechanically stable than thinner samples. It is shown here that this is due to slow water diffusion, which, in turn, is due to the rigid polymer structure caused by the double-bond character of the peptide bond, the many bulky peptide side groups, and the hydrogen bond network. More than a year is required to reach complete moisture saturation (≈10 wt.%) in a 1 cm thick plate of glycerol-plasticized wheat gluten, whereas this process takes only one day for a 0.5 mm thick plate. The overall moisture uptake is also retarded by swelling-induced mechanical effects. Hence, hygroscopic biopolymers are better suited for larger/thicker products, where the moisture-induced changes in mechanical properties are smeared out over time, to the extent that the product remains sufficiently tough over climate changes, for example, throughout the course of a year.
  •  
3.
  • Pecunia, Vincenzo, et al. (author)
  • Roadmap on energy harvesting materials
  • 2023
  • In: Journal of Physics. - : IOP Publishing. - 2515-7639. ; 6:4
  • Journal article (peer-reviewed)abstract
    • Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere.
  •  
4.
  • Wiedorn, Max O., et al. (author)
  • Megahertz serial crystallography
  • 2018
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Journal article (peer-reviewed)abstract
    • The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a beta-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4
Type of publication
journal article (4)
Type of content
peer-reviewed (3)
other academic/artistic (1)
Author/Editor
Lemme, Max C. (1)
Rothhaupt, Karl-Otto (1)
Bai, Yang (1)
Weigend, Maximilian (1)
Müller, Jörg (1)
Farrell, Katharine N ... (1)
show more...
Caironi, Mario (1)
del Campo, Javier (1)
Islar, Mine (1)
Krause, Torsten (1)
Uddling, Johan, 1972 (1)
Alexanderson, Helena (1)
Schneider, Christoph (1)
Johansson, Eva (1)
Battiston, Roberto (1)
Lukic, Marko (1)
Pereira, Laura (1)
Riggi, Laura (1)
Cattaneo, Claudio (1)
Jung, Martin (1)
Andresen, Louise C. (1)
Kasimir, Åsa (1)
Wang-Erlandsson, Lan (1)
Olsson, Richard (1)
Costa, Pedro (1)
Sutherland, William ... (1)
Boonstra, Wiebren J. (1)
Xu, Jie (1)
Hedenqvist, Mikael S ... (1)
Vajda, Vivi (1)
Roth, Stephan V. (1)
Seuring, Carolin (1)
Pascual, Unai (1)
Tscharntke, Teja (1)
Zhang, Renyun (1)
Mancuso, Adrian P. (1)
Brown, Calum (1)
Peterson, Gustaf (1)
Meyer, Carsten (1)
Seppelt, Ralf (1)
Johansson, Maria (1)
Martin, Jean Louis (1)
Graafsma, Heinz (1)
Allahgholi, Aschkan (1)
Greiffenberg, Domini ... (1)
Klyuev, Alexander (1)
Kuhn, Manuela (1)
Laurus, Torsten (1)
Mezza, Davide (1)
Poehlsen, Jennifer (1)
show less...
University
Royal Institute of Technology (3)
Chalmers University of Technology (2)
Swedish University of Agricultural Sciences (2)
Uppsala University (1)
Lund University (1)
Language
English (4)
Research subject (UKÄ/SCB)
Engineering and Technology (4)
Natural sciences (2)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view